首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用相位多普勒粒子分析仪(PDPA)对某型航空发动机双路离心喷嘴的雾化特性进行了实验研究。PDPA可直接测得测点处的喷雾液滴的尺寸分布和速度大小,并据此求出了测点处的索特尔平均直径SMD和液滴的平均速度。在喷雾锥三个横截面上进行了测量,得到了SMD的空间分布,据此得到了喷雾锥的锥角,并与光学照相和计算机图像处理测得喷雾锥角进行了对比。实验结果表明:液滴尺寸随着供油压力的增大而减小,当压力增大到一定程度时,液滴尺寸趋于不变;当主、副油路分别单独工作时,随测量横截面与喷口之间距离Z的增加,SMD减小;在供油压力不变时,同一个测量横截面内,随着径向距离X的增加SMD值变化不大;喷雾锥角基本不随供油压力改变而变化。  相似文献   

2.
张亚  刘倩  谢恒 《航空动力学报》2021,36(12):2537-2544
为解决离心喷嘴流量系数理论计算与试验偏差普遍较大的问题,采用Fluent两相流模型计算了不同切向孔直径下的喷雾锥角、流量系数等性能参数,分析发现切向孔直径加工精度对离心喷嘴流量系数有较显著的影响。通过塞规测量了4个喷嘴的切向孔直径,利用切向孔直径测量平均值建立几何模型,计算了较大范围不同压降下的喷嘴性能,并与试验结果进行了对比。模型计算结果和试验数据吻合较好,喷雾锥角与试验偏差小于1°,流量系数偏差小于4.2%。   相似文献   

3.
基于主动轮廓方法(ACM)原理,将ACM延伸开发应用到雾化锥角的测量领域.经过调试,ACM成功捕捉到了雾锥边界以及喷雾矩在喷口后一定位置处出现的收缩特征,准确地获得了雾化锥角.验证结果显示:ACM获得的雾化锥角数值与阴影法测量值之间的相对误差小于1.5%.基于ACM提取雾化锥角方法的应用可以在保证实验结果准确度的同时降低工程应用成本.   相似文献   

4.
王尧  李国岫  虞育松  丁佳伟  张涛 《推进技术》2017,38(4):903-908, 917
为了研究同轴旋转射流喷雾锥角的变化规律,设计了喷雾实验装置和同轴旋流喷注器。采用水和乙醇分别代替氧化剂和燃料,利用高速摄影系统对喷雾过程进行观测,分析不同喷射压力下喷雾锥角的变化规律。实验结果表明:内外两路同时喷雾时,喷雾锥角随着外路喷射压力的增加而增大,锥角值从81.6°增加至102.3°;但内路喷射压力增加后,喷雾锥角反而减小,从102.5°降低到94.8°。这个变化规律与单路旋流喷嘴的情况有所不同。将实验结果与通过动量定理推导出的理论公式进行对比,发现喷射压力小于0.2MPa时,实验值与理论公式吻合较好;随着喷射压力的增加,喷孔内液体的湍动能对喷雾锥角的影响逐渐增加,导致实验值与理论公式的偏差逐渐增大,喷射压力增加至0.6MPa时,实验值比理论值大10°左右。实验还研究了内路出口缩进对喷雾锥角的影响,结果显示随内路出口缩进长度的增加,喷雾锥角呈现先减小后增大的变化趋势。  相似文献   

5.
往复式汽油直喷发动机燃油喷雾特性研究   总被引:1,自引:1,他引:1  
通过试验研究了高压燃油喷射系统和涡旋喷油器的喷雾特性,在不同喷射压力、背压压力和喷油持续期条件下,利用高速摄像机对喷入定体积容器的雾态燃油进行了喷雾贯穿距离、喷雾锥角、喷雾远端燃油发展速度和液滴特性等参数的测量.试验结果表明在低背压压力下,喷雾呈现出空锥、较大范围的分布形态,有利于实现燃油与空气的均质混合;然而在高背压条件下,喷雾呈现出紧凑密集的分布形态,有利于实现燃油与空气的分层混合.获得的贯穿距离经验公式与试验测量值在一定范围内是一致的.低背压条件下,涡旋形态出现在喷雾的远端,而在高背压条件下,涡旋形态出现在喷雾的中部.   相似文献   

6.
徐顺  康忠涛  成鹏  李清廉 《推进技术》2017,38(7):1556-1562
为了研究不同喷注压降下液液同轴离心式喷嘴喷雾锥角的变化规律,采用高速摄像机观测喷雾形态。试验结果表明:内、外喷嘴单独工作时,喷雾锥角随着喷注压降的增加而增加。内、外喷嘴同时工作时,喷雾锥角随内喷嘴喷注压降的增加而减小,随着外喷嘴喷注压降的增加而增加。通过与内、外液膜同向旋转时喷雾锥角的变化规律对比,发现内、外液膜的旋转方向对外混式液液同轴离心式喷嘴喷雾锥角的影响不大,因为离心式喷嘴产生的锥形液膜的切向速度会很快转化为径向速度。由于液膜切向速度迅速转化为径向速度使得内、外液膜反向的动量转变为同向动量,从而造成利用角动量守恒来预测喷雾锥角的理论模型用于计算反向旋转的外混式喷嘴时存在较大误差。对于内、外液膜反向旋转的外混式喷嘴,由于液膜旋转方向对喷雾锥角的影响不大,可以按照同向旋转的公式进行计算。  相似文献   

7.
为了获得三旋流燃烧室喷嘴雾化性能与喷嘴几何尺寸的相互关系,针对供油压力以及旋流槽长宽比和旋流槽角度等关 键结构参数对燃油流量、喷雾锥角和雾化性能的影响进行了试验研究。采用3 维相位多普勒粒子分析仪测量了某一直线上各点的 索太尔平均直径和数密度分布,以及Rosin-Rammler 分布的特征直径和均匀度指数。结果表明:当供油压力提高时,燃油流量和喷 雾锥角增大;旋流槽几何尺寸的变化对燃油流量和喷雾锥角有不同的影响,当旋流槽长宽比和旋流槽角度增大时,燃油流量减小, 喷雾锥角增大。研究所获得的规律为三旋流高温升燃烧室的喷嘴优化设计提供了重要的理论依据。  相似文献   

8.
为了揭示微量润滑系统的喷射雾化规律,采用基于激光多普勒效应的三维粒子动态分析仪测量了油滴雾化特性.针对3种可降解绿色润滑油——三羟甲基丙烷三油酸酯、植物油6000和聚乙二醇400,测试得到了不同的油量、空气流量和截距条件下的雾化锥角及油滴大小、速度、数量的分布规律.试验表明,喷雾锥角主要由喷嘴结构决定,油滴数量基本符合...  相似文献   

9.
介绍了喷嘴主要构件的技术要求和加工工艺。通过试验得到喷嘴的流量特性、喷雾锥角、索特尔平均直径的分布规律。喷嘴的SMD随供油压力的增大而减小,当压力增大到一定程度时,SMD趋于不变;喷雾锥角基本不随压力的改变而改变。对10个试验喷嘴测量数据的拟合和方差分析结果表明:喷嘴流量与喷口半径的平方、旋流槽截面积成比例。在生产中,可以按小公差加工喷口和旋流槽,流量不足时,可采取加大旋流槽尺寸或增大研磨喷口(尢其是主喷口)的半径的措施,以增大喷雾锥角。  相似文献   

10.
对某重型燃气轮机燃料喷嘴的工作特性进行了试验研究.主要测定了该燃机喷嘴组在1.0MPa压力下工作时每个喷嘴的流量特性,通过数码照相和计算机图像处理测定各喷嘴的喷雾锥角,利用相位多普勒粒子分析仪(PDPA)和激光多普勒测速仪(LDV)测量雾化粒度SMD.分析试验结果,得出了一些有重要价值的数据和结论,为燃机喷嘴的研制和改进提供了重要依据.  相似文献   

11.
燃烧条件下凝胶自燃推进剂雾化特性试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
夏益志  王勇  洪流  杨伟东 《推进技术》2020,41(2):398-405
为了研究凝胶自燃推进剂的雾化特性及敏感因素,在单互击式喷嘴矩形燃烧室内进行了凝胶一甲基肼/四氧化二氮(MMH/NTO)喷雾燃烧过程可视化试验,采用光源后置消光法湮灭火焰自然辐射发光,采用彩色高速摄影获取了燃烧条件下的高质量雾场阴影图像,通过图像处理,有效提取了雾场的雾化锥角、破碎长度、液丝直径及液丝运动速度,分析了撞击角、射流速度和动量比的影响。结果表明,凝胶MMH/NTO稳态燃烧时可观察到液膜、贯穿视场的液丝和红棕色NO_2气体,推进剂混合燃烧不充分;撞击角从75°增大到105°,凝胶MMH/NTO撞击后的破碎长度、液丝直径减小,视场内可视红棕色NO_2气体变少,撞击角为105°时,推进剂会附着在喷注面上,从而影响液膜横向铺展,雾化锥角反而最小,建议撞击角选取90°。燃料射流速度从23m/s增大到45m/s,凝胶MMH/NTO撞击后的雾化锥角及液丝运动速度增大,破碎长度及液丝直径减小,雾化模式发生改变。动量比从1.04增大到1.52,凝胶MMH/NTO撞击后的雾化锥角及液丝运动速度增大,视场内红棕色NO_2气体变少。故一定量程内增加撞击角、射流速度、动量比有助于凝胶MMH/NTO推进剂混合燃烧。  相似文献   

12.
本文对某型航空发动机燃油喷嘴的工作特性和雾化质量进行了试验研究。主要包括:测定喷嘴的流量特性,通过数码照相和计算机图像处理测定喷嘴在不同压力下的喷雾锥角,利用相位多普勒粒子分析仪(PDPA)和激光多普勒测速仪(LDV)测量喷嘴的雾化粒度SMD及尺寸分布。通过对上述试验结果的分析,得出了一些有价值的结论。这些结论对该发动机燃油喷嘴的改进提供了重要依据。  相似文献   

13.
夏益志  王勇  洪流  杨伟东  陈宏玉 《航空学报》2020,41(1):123254-123254
为研究撞击式喷嘴凝胶自燃推进剂着火及火焰特性,在单喷嘴矩形燃烧室内进行了凝胶一甲基肼/四氧化二氮(MMH/NTO)喷雾燃烧过程试验研究。试验采用撞击角为75°、90°、105°的两股互击式喷嘴和撞击角为90°的两股燃料撞击一股氧化剂(F-O-F)、两股氧化剂撞击一股燃料(O-F-O)三股互击式喷嘴,首先结合高速摄影与纹影技术拍摄了燃烧过程纹影图像,随后采用高速摄影直接拍摄了燃烧过程火焰自然辐射发光图像。通过图像处理,提取了火焰着火距离、火焰轴向传播速度、火焰夹角以及反应距离,并分析了喷嘴类型、燃料射流速度的影响。试验结果表明,凝胶MMH/NTO燃烧主要发生在液膜破碎成液丝之后,射流速度越快,燃气扩散速度越快;凝胶MMH/NTO推进剂采用撞击角为105°的两股互击式喷嘴时着火距离最短;凝胶MMH/NTO着火时火焰轴向传播速度随燃料射流速度增加而增加,撞击角为90°时火焰沿喷注面下游传播速度较快;凝胶MMH/NTO稳态燃烧时火焰夹角随燃料射流速度增加而增加,反应距离随燃料射流速度增加而减小,其中撞击角为90°的两股互击式喷嘴火焰夹角最大,撞击角为105°的两股互击式喷嘴反应距离最短。  相似文献   

14.
针对1种带出口扩张段的射流式气动雾化喷嘴,将气液比的2个影响因素空气流量及燃油流量分开,通过试验分析了空气流量、燃油流量、气液2相相对速度分别对雾化性能的影响规律。采用相位多普勒激光测试仪测试喷雾下游雾化粒径,通过CCD相机及片光源拍摄其雾化锥角。结果表明:空气流量相比于燃油流量,对该型气动雾化喷嘴的雾化性能影响更大;当气液比一致时,气液2相相对速度越大,雾化粒径越小,雾化锥角越大;当气液比为0~2时,随气液比的增大,雾化锥角逐渐增大,雾化粒径逐渐减小;在气液比趋近于2时,雾化锥角达到最大值,雾化粒径达到最小值;当气液比大于2时,雾化锥角略微减小,雾化粒径基本保持不变。  相似文献   

15.
高密度烃燃料雾化特性试验   总被引:1,自引:7,他引:1  
采用试验手段研究了高密度烃燃料在直射式喷嘴情况下的雾化规律,采用数字图像处理技术,使用粒子图像测速系统(PIV)对其在横向高温气流中形成的喷雾场进行图像测量和分析。初步研究了气流温度、油压、气压与气流速度对高密度烃燃料雾化特性的影响,以及射流与喷嘴距离对喷雾粒子索太尔平均直径(SMD)的影响。试验结果显示:气流温度和油压的增加有助于提高高密度烃的雾化效果。在研究气流速度对其影响时,要考虑加热气流蒸发产生的影响,在雾化初始阶段速度因素占主导地位,而在下游距离喷嘴50~75mm间的某一位置开始,蒸发因素将起到主要作用。通过数值计算与实验比较,进一步说明了高温气流蒸发作用在颗粒二次雾化中的重要性。研究结果为优化设计高密度烃燃料发动机燃烧室提供依据。  相似文献   

16.
撞击式喷嘴凝胶推进剂雾化及表征   总被引:4,自引:7,他引:4       下载免费PDF全文
采用激光全息和图像处理技术,研究了撞击式喷嘴撞击角和射流速度对凝胶推进剂雾化性能的影响,撞击角范围为40°~90°,射流速度范围为15~55 m/s。研究了气/液撞击对凝胶推进剂雾化性能的影响,结果表明:增大撞击角和射流速度均有助于凝胶推进剂的雾化;减小射流直径有利于凝胶推进剂雾化;凝胶推进剂的极限表观粘度是影响其雾化的主要因素。分析了撞击式喷嘴凝胶推进剂喷雾场的特征,认为在本文研究的范围内,可以将凝胶推进剂喷雾场依次分为规则扇型的液丝区域、紊乱网状的液丝区域和液丝与液滴共存区。  相似文献   

17.
为了深入分析燃油喷嘴对燃气轮机燃烧室性能的影响,针对燃气轮机燃烧室中的直射式气动雾化喷嘴开展了数值模 拟,获得了气流流量、燃油流量和气液比对雾化性能的影响规律,喷嘴的雾化性能参数包括雾化粒径和雾化锥角。结果表明:气液 比和气流流量对该型喷嘴的雾化性能有显著影响,燃油流量对雾化性能的影响较小;气液两相间相对速度是影响该型喷嘴雾化性 能的决定因素,相对速度增大有利于减小雾化粒径,并增大雾化锥角;气流流量和气液比的增大均有利于雾化粒径的减小,燃油流 量的增加将使雾化粒径增大;增大气流流量、气液比和减小燃油流量均可使雾化锥角增大;该型喷嘴的雾化锥角变化范围为 30.12°~41.24°,雾化粒径变化范围为131.46~ 186.52 μm。喷嘴可实现在较小的雾化锥角变化范围内获得较宽的雾化粒径变化, 以此匹配燃气轮机燃烧室不同工作状态,具有较高的实用价值。  相似文献   

18.
基于滑动弧的航空发动机燃烧室头部喷雾特性   总被引:1,自引:0,他引:1  
张磊  于锦禄  陈一  胡长淮  蒋永健  田裕 《航空学报》2021,42(3):124308-124308
发明了航空发动机燃烧室滑动弧等离子体燃油裂解头部,并开展了燃油喷雾性能实验,实验研究了不同放电电压下滑动弧等离子体对燃油喷雾性能的影响规律。结果表明,实施滑动弧等离子体燃油裂解之后,初次雾化的燃油在高温电子的碰撞下高碳链的燃油分子被打断成低碳链的小分子,燃油的黏性力降低,雾化性能得到提升。随着放电电压的升高,燃油喷雾的雾化锥角增大,SMD平均值减小,不均匀系数下降,燃油喷雾的均匀性得到明显的改善。当入口空气流量为20 m3/h,余气系数为0.6时,未施加等离子体的燃油喷雾的雾化锥角为43°,SMD平均值为93.545 6 μm,不均匀系数为0.304,当放电电压达到200 V时,燃油喷雾的雾化锥角增大到75°,SMD平均值减小为89.690 6 μm,不均匀系数下降到0.233。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号