首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对液氧/煤油发动机性能提升时管路流阻大的问题,采用电传热试验系统研究了高分子减阻剂对模拟管路中高流速火箭煤油的流阻与传热特性的作用效能,并采用分析仪器考察了高分子减阻剂的添加对火箭煤油理化性能的影响。研究结果表明,含有0. 05%减阻剂的火箭煤油的理化性能满足《液体火箭发动机用煤油规范》关键技术指标要求;减阻剂的添加对火箭煤油产生一定的减阻效果,在流速20~60 m/s,温度50~200℃范围内,JZ-1的减阻率达60. 3%~76. 4%,JZ-2的减阻率为33. 1%~48. 4%;而减阻剂的添加降低了火箭煤油的传热性能,且减阻剂分子量越大传热性能降低越明显,在流速50 m/s,温度175℃时,添加JZ-1,JZ-2后火箭煤油传热系数分别下降32. 8%,8. 3%。从减阻剂在改变流动阻力和传热两方面评价,JZ-2对火箭煤油具有较佳的综合性能。  相似文献   

2.
多相流环境下绝热材料烧蚀试验方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王金金  查柏林  张炜  张艳 《宇航学报》2019,40(3):362-368
为深入了解高温多相流环境中绝热材料烧蚀规律,以氧-煤油烧蚀试验系统为基础,采用氧化硼(B2O3)粉末为添加粒子,发展了一种用于绝热材料烧蚀性能测试的新方法,并进行了验证测试。结果表明:氧-煤油烧蚀试验系统的温度为500~2700 K,射流速度为200~1500 m/s,可通过调整燃烧室压力、烧蚀距离和粒子浓度等参数适应各种烧蚀工况;B2O3颗粒在高温射流中发生熔化、蒸发等相变,可用于模拟火箭发动机中的凝聚相粒子;验证试验中绝热材料的烧蚀率和烧蚀规律与其他多相流烧蚀试验结果相近。结果证明该装置可用于开展多相流环境下绝热材料烧蚀试验研究。  相似文献   

3.
左博  张蒙正  张玫 《火箭推进》2008,34(1):26-29
为了建立凝胶推进剂管路流动模型,分析了凝胶推进剂模拟液在直圆管内的流动特性,并对3种模拟液在第二和第三流动区内管路流阻的计算值与试验值进行了对比分析,结果表明:在第二流动区,用幂律流变方程推导的压降公式计算值与试验值有较好的一致性;在第三流动区,可以近似用牛顿流体压降公式计算管路流阻。此外还分析了压降的误差传播系数,结果表明流变指数和管径的误差传播系数最大。  相似文献   

4.
针对固体火箭发动机中非球形铝滴的旋转受力问题进行数值模拟,详细分析流速变化对颗粒的受力影响。计算结果表明,非球颗粒在流场中的升力系数与无量纲转速之间已经不再满足经典的理论关系式。雷诺数Re1时,周向升力系数存在着交替出现的2组极大值与极小值;升力系数均为正值,且周向变化较为平缓。随来流速度增加,阻力系数变得均衡,系数值向0值逼近;升力系数也急速降低。当相对流速由0.5 m/s提高到5 m/s时,颗粒所受阻力锐降89%。颗粒的阻力系数与雷诺数之间满足新的关系式。  相似文献   

5.
近年来,低温推进剂在火箭推进领域得到了广泛应用,针对液氧、液氢以及液甲烷等低温推进剂的研究也得到了深入开展。然而,有关低温推进剂热力学性能的研究虽有开展,但各种推进剂性能的特点和差异缺乏研究,对低温推进剂的热力学性能缺乏综合性分析研究和系统认识。统计了1960年以来火箭推进剂的使用以及按照火箭级应用分布情况,对低温推进剂在火箭推进领域的应用与发展进行系统性综述。从低温推进剂的基础热物理性质出发,面向航天推进应用,对不同低温推进剂的动力特性、传输特性、贮存特性以及致密化特性4个方面进行综合评估。结果表明:液氢推力特性最好,氢氧发动机理论比冲可达457 s。相同管路和工况条件下,液氢流动阻力最小,液氧流动温升最小,液甲烷流动阻力和温升特性表现居中。以管长为10 m、管内径为0.1 m的加注管路为例,液氢流动压降小于5 kPa,液氧流动温升小于0.5 K。在地面停放过程中液氧和液甲烷温升小,贮箱增压慢,同时液甲烷热分层现象较弱。对于高5 m、直径3 m的圆柱形贮箱来说,当外界热流密度为50 W/m2时,液氢温升可达4.83 K,液氧仅为1.93 K;液氧贮存周期可达36...  相似文献   

6.
为了探究煤油燃料火箭基组合循环(RBCC)发动机燃烧室在冲压模态下的燃烧特性,构建了一套仿真计算方法用于预测、分析燃烧室内流动及燃烧过程。以带支板喷注器、单凹腔火焰稳定器RBCC燃烧室为例,开展了冲压模态下的内流场三维数值模拟,计算得到的壁面压力曲线与地面试验及飞行试验结果符合良好。分析燃烧室压力、马赫数、燃气组分等参数可以发现:当前燃烧室结构能够实现冲压模态下液体煤油燃料的稳定、高效燃烧;与冷流相比,压升可达5倍以上;支板能够有效提高煤油燃料的掺混能力;火箭安装台阶下游存在利于燃烧和火焰稳定的回流区;通过调整凹腔、支板等喷注器供油规律,可提高来流氧气的利用率,实现更为充分的燃烧。  相似文献   

7.
针对固体火箭发动机尾焰高温(总温超过3500℃)、高污染(氧化铝颗粒和氯化氢气体等)的问题,基于水冷壁、水喷淋等水处理系统的有效性,提出了一种采用具有更多冷能的水的固态形态——冰,对地面热试车的固体火箭发动机尾焰进行冷却降温与污染物沉降的新型处理方法。对冰筒装置内发动机尾焰与冰壁面间的流动换热过程开展了理论分析,并针对XXΦ127及XX500两种规模的固体火箭发动机开展了试车实验。结果表明,发动机出口尾焰在冰筒装置内实现了大幅度降温,冰筒出口气体温度低于100℃,氯化氢气体去除率大于97%,速度低于50 m/s、场外噪音小于85 dB。试验结果成功验证了新型冰筒处理技术的可行性和有效性,能够快速实现固体火箭发动机尾焰降温、降速、降噪和降污染的“四降”目的。  相似文献   

8.
高翔宇  孙纪国  田原 《火箭推进》2013,39(4):19-23,51
为了研究火箭发动机推力室冷却通道内的甲烷传热和流阻特性,研制了缩比推力室甲烷传热试验系统,并以推力室挤压热试验的形式进行了5次超临界甲烷传热试验和2次亚临界甲烷传热试验研究.超临界甲烷传热试验燃烧室压力为5.5~7.5 MPa,燃烧室氢氧混合比约为6.8,甲烷温度为128~230 K,甲烷冷却剂流量为5~7 kg/s,甲烷冷却剂入口压力为8.3~11.7 MPa.亚临界甲烷传热试验的室压约为4 MPa,氢氧混合比2.8,甲烷温度为:128~189 K,甲烷冷却剂流量约为2.9 kg/s,甲烷入口压力为3~3.5 MPa.通过试验研究获得了液态甲烷在推力室冷却通道内超临界压力状态和亚临界压力状态下的传热和流阻特性.  相似文献   

9.
针对航天生产试验现场有毒推进剂废气废液的无害化处理,设计了一种火箭煤油/空气燃烧处理装置,通过富燃/富氧高温燃气处理硝基类氧化剂/肼类燃料的废气废液。基于该燃烧处理装置,分别进行了燃烧器性能调试以及N_2O_4与甲基肼的废气与废液处理实验。实验结果表明,燃烧装置在两种基本工作模态下,燃气温度小于1 200℃,燃烧高效、稳定;N_2O_4在处理流量0~20 g/s时,排放物中NO_x浓度最高为25 ppm,燃气温度小于1 200℃;在甲基肼处理流量6 g/s时,排放物中VOC浓度小于0.05 ppm,NO_x浓度小于2.0 ppm,其中燃气最高温度随甲基肼流量增加不断增大,最高达1 300℃。该燃烧处理装置可实现对有毒航天推进剂高效、彻底的处理,废气排放符合相关标准要求。  相似文献   

10.
Metal/N_2O粉末火箭发动机实验研究   总被引:3,自引:0,他引:3  
采用气压驱动供粉方式,开展了Metal/N2O火箭发动机点火实验。通过分析活塞位移及燃烧室压强振荡,研究了两相流动特性。根据液滴燃烧模型,分析了燃烧室压强、颗粒滞留时间、氧燃比等因素对发动机燃烧效率的影响。通过以上研究,验证了此种发动机的优良性能。结果表明,输送管路中固相浓度脉动幅度在颗粒粒径40μm、两相流空隙率97%、氮气流动速度27 m/s情况下小于±0.36%;Mg/N2O实验平均特征速度效率在燃烧室压强0.5 MPa情况下高达96.4%,Al/N2O实验在燃烧室0.91 MPa情况下燃烧效率达到88.5%;提高燃烧室压强、颗粒滞留时间,可提高燃烧效率,但氧燃比对燃烧效率影响较为复杂。  相似文献   

11.
为提高液体氧化亚氮的自增压性能,使用PR(Peng-Robinson)状态方程,求解不同百分含量、温度、压强条件下氧化亚氮和氧气的相平衡状态,得到-40~30℃下二元组分气-液相平衡数据,并与文献中的实验数据进行对比验证。结果表明:计算获得的相平衡数据与文献中的实验数据吻合程度较好,PR状态方程能较好地描述该二元组分气-液相状态;在相同的温度条件下,随着压强的升高,气相密度增大,而由于氧气的溶解度增大导致液相密度逐渐减小,-40℃时压强从1MPa增大到15 MPa,气相密度提高了28倍,液相密度从1 126kg/m3减小到767kg/m3;在一定压强条件下,与气相密度相比,液相密度受温度的影响更显著,8 MPa时气相密度从-40℃的200kg/m3升高到30℃的318kg/m3,液相密度从-40℃的1 035kg/m3减小到30℃的542kg/m3。  相似文献   

12.
对粉浆浇注熔硅天线罩结构在3.7~5.0M时淋雨滑车试验结果作了最后评估.其结果为:在霍洛曼空军基地利用滑车轨道设备进行的试验证明,对相同的法向速度分量来说,粉浆浇注熔硅材料的最大冲蚀率变化系数为3;高纯度粉浆浇注熔硅的雨水冲蚀极限速度约为500m/s;法向速度分量超限时,天线罩出现重大损伤;硅树脂防潮密封胶DC808和DE SR80可能不会严重影响雨水冲蚀性能;建议在自然雨区中飞行的导弹,其碰撞角应受控制,以使天线罩上的自由流的法向速度小于500m/s.  相似文献   

13.
铝垫片-榫槽结构是液体火箭发动机常用的管路连接形式,其长期贮存密封性能对发动机的可靠性起着重要作用。该结构的密封性能取决于密封区的应力分布,从铝垫片这一连接结构中的主要密封元件着手,研究其力学特性及其对密封区应力分布的影响。首先,开展L4铝垫片材料的力学性能试验,建立了L4铝材料的本构关系;其次,开展常温及200℃下L4铝材料的蠕变试验,建立铝垫片的时间硬化型蠕变模型;最后,使用Abaqus有限元软件分析5~25 N·m预紧力矩下垫片的应力分布规律,以及垫片密封面接触压力随时间变化关系。计算结果表明,垫片的应力分布与装配预紧力矩紧密相关;材料的蠕变特性会导致垫片密封面接触压力随时间松弛,是造成结构泄漏的一个重要隐患。  相似文献   

14.
谢东原  周全  陈舸  陈乐平 《上海航天》2023,40(1):150-155
探究超声处理温度、超声处理时间及超声功率密度对Mg-Gd-Y-Zr合金晶粒和力学性能的影响。结果表明:超声高温熔体处理可有效细化Mg-Gd-Y-Zr合金晶粒,提高其力学性能;在660~750 ℃范围内,随着处理温度的升高,合金晶粒尺寸逐渐增大;相较于未处理合金,处理温度在750 ℃时,合金晶粒的细化效果更为显著。当超声功率密度为0~2.31 W/cm3或处理时间为0~90 s时,随着超声功率密度的提高或处理时间的增加,合金晶粒尺寸先减小后增大,转折点分别为1.29 W/cm3和60 s。合金的力学性能与其晶粒尺寸基本对应,合金的晶粒尺寸越小,其抗拉强度和伸长率越高。当处理温度为750 ℃、超声功率密度为1.29 W/cm3、处理时间为60 s时,与未处理的合金相比,合金晶粒尺寸减小53%,其抗拉强度和伸长率分别提高了31%和79%。  相似文献   

15.
对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制。采用超支化SU-2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU-2助剂含量,研制出固体质量分数89%的推进剂配方。依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N、草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数。经装药试验验证,获得6.86 MPa燃速5.185 mm/s,3~11 MPa压强指数0.328,密度≥1.80 g/cm3,20℃最大拉伸强度σm≥1.0 MPa,-40℃最大伸长率εm≥61.0%;5 h使用期粘度为2625 Pa·s;综合性能优良的高固体含量低燃速HTPB推进剂。以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴。  相似文献   

16.
新型高燃速推进剂是一种采用小球粘结、无溶剂挤成型的复合改性双基推进剂,20℃、6.86MPa下用靶线法实测静态燃速为46.25mm/s。为研究这种新型高燃速推进剂在发动机内的燃烧特性,在不同燃通比和燃喉面积比的装药条件下,进行了发动机试验,获得了相应的压强-时间曲线。分析结果表明,该推进剂在火箭发动机内不同压强下可出现3种完全不同的燃烧类型,即类似于双基推进剂的平行层燃烧、类似于超高燃速推进剂的对流燃烧和有限对流燃烧,并给出了3种燃烧类型的判断条件。  相似文献   

17.
针对液氧/甲烷、液氧/煤油等火箭发动机地面试验中氧/甲烷排放易出现重气云、易燃易爆危险性高等问题,设计一种安全排空装置,总体结构为下部是收集箱,上部是排空筒。采用功能驱动设计、应力校核尺寸的方法,对排空装置的收集箱、排空筒、固定支架几个关键部件进行了结构设计。设计结果为:收集箱是内部焊接有角钢骨架的钢板结构,钢板截面应力为0.4 MPa,远低于允许应力,人孔通过低温橡胶密封;排空筒下部是花管结构,插入收集箱与其联通,中部焊接排放接嘴,所受平均风力为111.2 N/m,引起的最大弯曲正应力为1.45 MPa,切应力为0.01 MPa,安全系数均很高;固定支架螺栓所受应力幅为2.1 MPa,低于许用值9.7 MPa。利用数值分析工具,仿真了排空装置工作过程,分析结果为:收集箱内最大压力为0.107 MPa,排放接口处最大冲击载荷为0.72 MPa、出口平均流速为45 m/s,均符合强度要求和安全排放要求。加工的排空装置多次成功应用于相关试验,结果表明:该排空装置设计方法可行,结构可靠,实现了预期功能,保证了氧/甲烷等易燃易爆介质的安全排放。  相似文献   

18.
RFI工艺用环氧基树脂膜的研制   总被引:5,自引:0,他引:5  
据RFI工艺用环氧树脂基树脂膜低温成膜性、高温流动性和浸渗性的技术性能要求,设计了在一定温度内具有低反应活性的GY6010型高粘度液态双酚A二缩水甘油醚环氧树脂、HT907型六氢邻苯二甲酸酐和DY062型苄基二甲胺树脂膜制备体系。根据等当量反应计算理论和浇注体的力学性能,确定了树脂膜制备体系的最佳混合比例,利用加热聚合、流延成膜和快速冷却方法,制备了具有低固化度的BS-1型环氧树脂基树脂膜。经测试该树脂膜成膜性、弯曲性良好;在80℃的融渗温度下粘度为645 mPa.s,低粘度区域宽度(粘度小于1 000 mPa.s)达25 m in,凝胶时间达56 m in。采用该树脂膜制备的RFI叠层板试件空隙含量(0.8%)极低,与模压试件相比,RFI试件拉伸强度、弯曲强度和层间剪切强度分别提高4.57%、6.26%和21.88%。  相似文献   

19.
冯耀辉 《火箭推进》2003,29(6):30-39
为进行N2O/丙烷(C3H8)火箭发动机(NOP)试验,在亚拉巴马大学(UAH)新建了一座发动机试车台,装备了台架式推进剂供应系统、10001bsf(4448.22N)的推力架和数据采集系统.研究了N2O催化分解点火方案,对几种催化剂材料进行了评估.Shel1-405和钴基的ZSM-5性能良好,可使N2O充分分解,并点燃碳氢燃料,如丙烷.试验表明,纯N2O通过Shel1-405时,催化分解反应在400°F(204℃)时进行,如果加入少许碳氢燃料(例如丙烷或丙烯),此温度将下降到大约200°F(93℃).NOP发动机在L*=3m时,在混合比4.89到8.68之间进行了试验.在合适的热损失模型下,试验数据与理论计算结果相吻合.使NOP发动机稳定工作的范围基本确定为N2O流量<0.270 1bm/sec(0.122kg/s),混合比在5~6之间.用辐射测量仪来测量发动机排气温度和羽流成分,用羽流皮托管校验推力数据.  相似文献   

20.
Aerojet 公司得到俄罗斯登月计划使用的已经飞行验证的液体火箭发动机后,用现代仪器和控制把它改进成可重复使用和重复起动发动机,并用热试车验证了这些改进项目。NK—33液氧/煤油发动机是 Samara 州科学和生产企业“TRUD”(现称为N.D.Kuznetsov Samara 科学技术公司)为苏维埃 N—1运载器设计制造的。该补燃发动机产生的高压(14.54MPa 的室压)和高性能(真空比冲为3246m/s)是西方的烃类发动机从来也没有实现过的。Aerojet 公司引进了36台 NK—33发动机、9台 NK—43发动机(N.D.Kuznetsov SSTC 同一发动机在上面级的翻版)。NK—33发动机改进后将首先用于 Kistler K—1运载器。改进项目有:用电磁阎替换火药起动阀;替换推力和混合比控制用的机电起动阀;重新设计吹除供给系统;更换涡轮泵起旋和主燃烧室点火器的固体推进剂;为增加万向节和推力矢量控制架而重新设计更换机架。增加阀、火药起动器和管路以重新起动发动机,更换设备和电缆束。Aerojet 对该发动机进行了成功的热试车,以验证新部件和结构,并开始研究可重复使用 Kistler 运载器上的发动机耐用性。本文描述了对原始俄罗斯发动机的改进项目,报道了至今为止的试验结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号