首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过数值求解无碰撞电流片中可压缩磁流体力学模型下得到的一般形式的色散关系,讨论了无碰撞电流片中引导场对低频电磁波不稳定性的影响.结果表明,平衡态磁场中的引导场,对于三维扰动传播的波不稳定性有很强的影响.(1)在电流片中间平面上(z=0),无引导场时,没有不稳定性发生,但若存在引导场,不稳定性便发生,并随着引导场的增强,不稳定性明显增强,不稳定的波模可能是低混杂模.(2)在中间平面附近(z=0.2),电流片是不稳定的.随着引导场的增强,不稳定性增长率明显地增强,不稳定的波模从平行和反平行两个方向传播变为反平行方向一个方向传播,并且是斜传播的,具有低频哨声模或低混杂模的特征.(3)在电流片边缘附近(z=0.8),引导场对不稳定的波模和增长率没有明显影响,不稳定的波模都是准平行的哨声波.   相似文献   

2.
Based on analytical calculations we have currently argued that spontaneous reconnection through thin collisionless current sheets is an essentially three-dimensional (3 D) process (Büchner, 1996 a, b). Since 3 D kinetic PIC codes have become available, the three dimensional nature of the collisionless current sheet decay are now illustrated by numerical simulations (Büchner and Kuska, 1996; Pritchett and Coroniti, 1996; Zhu and Winglee, 1996). While the latter two claim a coupling to a longer wavelength kink mode as a main factor, destabilizing thin current sheets in 3 D, our simulations have revealed that even shorter scale perturbations in the current direction suffice to destabilize thin sheets very quickly. Since past simulation runs, however, were limited to mass ratios near unity, the influence of the electrons was not treated adequately. We have now investigated the stability of thin collisionless current sheets including 64 times lighter negatively charged particles. We can now show that while the two-dimensional tearing instability slows down for M = Mp/me = 64, the three-dimensional current sheet decay is a much faster process — practically as fast as the mass ratio M = 1 3 D sheet decay, even without kinking the sheet. We further conclude that, unlike the two-dimensional tearing instability, the three-dimensional decay of thin current sheets is not controlled by the electrons. For a sheet width comparable with the ion inertial length, we also recovered signatures of the Hall effect as predicted by Vasyliunas (1975) in the mass ratio M = 64 case. The ion inertial length seems to be the critical scale at which the sheet starts to decay.  相似文献   

3.
A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called “double gradient instability”, – a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet.  相似文献   

4.
无碰撞电流片哨声波不稳定性   总被引:3,自引:3,他引:0  
通过数值求解文献[4]中物理模型A得到的一般形式的色散关系,讨论了无碰撞电流片低频波不稳定性问题.结果表明,哨声波能被无碰撞电流片直接激发.在中性片上(z/di=0),在较宽的波数范围内,斜哨声波是可以传播的,但它基本上是稳定的.在离子惯性区内(z/di<1,电子惯性区外),斜传播的哨声波是不稳定的.在离子惯性区边缘(z/di=1),斜传播的哨声波仍然是不稳定的,增长率更大,不稳定的波频率范围更高.此外,朝向中性片方向传播(kzdi<0)的哨声波比离开中性片方向传播(kzdi>0)的哨声波有更大的增长率.  相似文献   

5.
本文讨论了晨昏电场存在时磁尾等离子体片内撕裂模不稳定性的激发和增长问题。得到的结果可以用来解释晨昏电场对磁亚暴的触发以及加快等离子体片贮存能量的耗散等现象。我们推导了存在电场漂移时的撕裂模方程,并在均匀电流片模型下求解了该方程的解析解。结果表明触发不稳定性所允许的临界电流片宽度与电场大小近似成正比,这表明考虑晨昏电场效应后磁亚暴更易被激发。此外对于厚度相同的电流片来说,长波撕裂模的增长率也随晨昏电场的加强而增大。   相似文献   

6.
In some recent MHD simulations of the near-Earth plasma sheet we studied onset and evolution of reconnection due to non-linear resistive instabilities. In our present contribution we show that these non-linear instabilities can be amplified significantly by inflow through the plasma sheet boundary and we discuss the consequences of that driving mechanism on the global dynamics of the instabilities. For high magnetic Reynolds numbers we find thin current sheets developing.  相似文献   

7.
有限β等离子体中密度和磁场不均匀驱动的动理学Alfven波   总被引:1,自引:0,他引:1  
在分析有限β等离子体中的密度、磁场不均匀引起的漂移波不稳定性的基础上,剖析了漂移波不稳定性对动理学Alfven波激发的作用.动理学理论能正确地处理有限拉莫半径效应和波粒共振相互作用,本文根据带电粒子在电磁场中的运动特性,采用Vlasov方程描述离子运动,运用漂移动理学方程对电子运动进行描述.密度不均匀和磁场不均匀对产生漂移不稳定性的对比分析表明:在有限β等离子体中,密度不均匀比磁场不均匀更易激发漂移不稳定性,且密度不均匀激发漂移不稳定性中的能量转换和转移更为强烈.这种能量的转换为动理学Alfven波的激发提供了物理基础.所得数值解表明:动理学Alfven波在磁层中能广泛地被激发产生,特别是在磁层空间的极尖区、磁层顶和等离子体片边界层等具有明显的不均匀性区域中更容易被激发产生.本文的研究结果进一步表明动理学Alfven波对磁层空间中能量传输具有重要作用.  相似文献   

8.
以2004年9月28日02:53:20 UT的亚暴为例, 通过TC-1在磁尾约12.5 Re 和Geotail卫星在近地磁尾等离子体片约8~9 Re的联合观测, 研究亚暴触发过程中近地磁尾等离子体片中等离子体波动特征. 结果表明, 亚暴触发区是近地磁尾中心等离子体片中较小的一个区域, 在亚暴触发区中低混杂不稳定性在近地磁尾等离子体片中存在, 准垂直传播的低混杂波发生在亚暴触发过程中, 而亚暴触发过程中近地磁尾等离子体片外边界区内的磁场偶极化信号和扰动都非常微弱. 在亚暴触发和亚暴膨胀相过程中出现了多次具有不同特征的磁场偶极化现象.   相似文献   

9.
10.
We investigate the role of gravity in a linear stability analysis of the onset of coupled convective and morphological instabilities during directional solidification at constant velocity of a dilute alloy of tin in lead. For solidification vertically upwards, the temperature gradient alone would cause a negative density gradient and the solute gradient alone would cause a positive density gradient. Two types of instability are found, a convective type that occurs for long wavelengths and a morphological type that occurs for short wavelengths. In general, these are coupled but the morphological instabilities are practically independent of gravity and thus correspond to the predictions of previous morphological stability theory in which density changes and convection are neglected. The convective instabilities depend strongly on gravity; for a growth velocity of V = 1 μm/s and a temperature gradient in the liquid of GL = 200 K/cm, the critical concentrations for convective instabilities are 3.1 × 10?4, 3.1 × 10?2 and 2.39 wt. % for ge = 980 cm/s2, 10?4 ge and 10?6 ge, respectively. For low velocities, the convective instabilities occur at much lower solute concentrations than the morphological instabilities whereas at high velocities, the reverse is true. At intermediate velocities where the changeover takes place, there are oscillitory instabilities of mixed character whose periods range from 60 s at ge to 6 × 104 s at 10?6 ge.  相似文献   

11.
In the frame of a simple self-consistent model for high-temperature turbulent current sheet (HTCS) /1/, three effects are considered. (i) Gradient instabilities create anamalous plasma diffusion across magnetic field and increase the power of energy release in HTCS. (ii) Penetration of a small transverse component of magnetic field into HTCS also can significantly increase an energy output of HTCS. (iii) There appears electric current circulating around a current sheet at a compression of longitudinal magnetic field. This current induces a Joule heat; however, a total flux of the longitudinal field remains constant.  相似文献   

12.
本文从理想磁流体力学出发,分析了固结在光球层上的半圆弧形电流片的线性稳定性。主要结论是:当沿电流方向的磁场小于某临界值时,电流片将不稳定,且最先引起不稳定的扰动模沿电流方向的波数近似为电流片圆弧直径的倒数。   相似文献   

13.
Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T T) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (E<50keV). Both currents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropics are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop ( few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to “High Frequency” (HF) waves. These “HF” waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so large that they can produce a strong pitch-angle diffusion of energetic ions and a spatial diffusion that leads to a reduction of the diamagnetic current. The signature of a fast ion diffusion is indeed regularly observed during the early breakup; it coincides with the sudden development of large amplitude transient fluctuations, ballooning modes, observed at much lower frequencies (fH+). These results suggest that the HF waves, generated by field-aligned electron beams, provide the dissipation which is necessary to destabilize low frequency (ballooning) modes.  相似文献   

14.
Ionospheric inhomogeneous plasma produced by single point chemical release has simple space-time structure, and cannot impact radio wave frequencies higher than Very High Frequency (VHF) band. In order to produce more complicated ionospheric plasma perturbation structure and trigger instabilities phenomena, multiple-point chemical release scheme is presented in this paper. The effects of chemical release on low latitude ionospheric plasma are estimated by linear instability growth rate theory that high growth rate represents high irregularities, ionospheric scintillation occurrence probability and high scintillation intension in scintillation duration. The amplitude scintillations and the phase scintillations of 150?MHz, 400?MHz, and 1000?MHz are calculated based on the theory of multiple phase screen (MPS), when they propagate through the disturbed area.  相似文献   

15.
本文分析了极光区上空以低混杂波作为泵波激发静电离子迴旋波的可能性,并计算了增长率。结果表明,当泵波较强时(峰值100mV/m)增长率可达0.5ωci,大于电流驱动不稳定性及离子束流不稳定性等线性理论所可能期待的增长率。从而在某些情况下,离子迥旋波的这种参量激发可能是主要的。   相似文献   

16.
运用二维可压缩磁流体动力学(MHD)模拟方法考察了周期性多电流片系统中涡旋诱发重联(VIR)过程的发展演化.结果表明,相邻电流片中的VIR过程发生相互作用,相距越近,作用越强烈.反对称和对称波模VIR过程的线性增长率随电流片间距的减小而分别增大和降低.当电流片间距小于某临界值时,反对称波模VIR完全被抑制.相对于对称波模VIR,反对称波模VIR过程对空间多电流片系统的发展会发挥更大作用.   相似文献   

17.
Complex magnetic and plasma structures observed in the coronal streamer belt (Crooker et al., 1993; Woo 1994) might arise from the instabilities and evolution of multiple current sheets formed by adjoining coronal helmet streamers. Previously we examined the static triple current sheet (TCS), and found that three linearly unstable modes exist, two of which are potentially observable by the LASCO instrument onboard SOHO (Dahlburg and Karpen 1995). Here we investigate the variations created in this model by the inclusion of wake flows, which have been observed in coronal streamers (see Figure 1). Our principal finding is that the structure of the modes is changed significantly by the Alfvénic and sub-Alfvénic wake flow, while their growth rates are not.  相似文献   

18.
A current sheet model with developed medium scale turbulence has been constructed. It is suggested that regular plasma flow in the current sheet is compensated by diffusive flux and plasma mixing, leading to temperature equalization. The analyzed turbulence has the form of electrostatic vortices in which electrons and ions move with the same velocities and hence does not lead to anomalous resistivity and current dissipation. It is possible to determine the plasma pressure dependence on magnetic vector potential and to find the Grad—Shafranov equation solutions. The theory is used to explain the Earth's magnetosphere plasma sheet characteristics. It is taken into account that experimentally observed plasma velocity fluctuations in the Earth's plasma sheet and quiescent prominences are much higher than regular plasma flow velocities. The analysis of turbulent current sheet dynamics after the regular motion weakening allows to construct the prominence formation theory. The decreasing of plasma pressure in the sheet due to diffusion leads to field-aligned plasma flow and plasma tube filling by cold chromospheric plasma by the action of siphon mechanism.  相似文献   

19.
High level of turbulence is one of the main peculiarities inherent to magnetospheric dynamics. Mechanisms for generation of magnetospheric turbulence are analyzed. The instabilities in the plasma pressure distribution are examined as source of large and medium scale modes in the turbulence spectra. Large-scale modes (which scales are comparable with scale of the magnetosphere) lead to convective transport of the magnetospheric particles. Excitation of such modes is analyzed being based on the suggestion of the existence of week instability in the distribution of plasma pressure.  相似文献   

20.
本文介绍了非均匀等离子体片外边缘离子束流-密度梯度漂移不稳定性的二级理论。二级动量交换率的计算表明, 模型等离子体中冷、暖束流离子的场向动量以及暖束流离子的横向动量可以被静电波来减小。这些波是由离子束流-密度梯度漂移不稳定性产生的。这些结果对于理解等离子体片外边缘等离子体的各向同性化和热化是很有用的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号