首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.  相似文献   

2.
This new multi-disciplinary medical experimentation center provides the ideal scientific, medical and technical environment required for research programs and to prepare international space station Alpha (ISSA) missions, where space and healthcare industries can share their expertise. Different models are available to simulate space flight effects (bed-rest, confinement,...). This is of particular interest for research in Human psychology, physiology, physiopathology and ergonomics, validation of biomedical materials and procedures, testing of drugs, and other healthcare related products. This clinical research facility (CRF) provides valuable services in various fields of Human research requiring healthy volunteers. CRF is widely accessible to national and international, scientific, medical and industrial organisations. Furthermore, users have at their disposal the multi-disciplinary skills of MEDES staff and all MEDES partners on a single site.  相似文献   

3.
《Space Policy》2014,30(3):143-145
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to ‘endure’ the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.  相似文献   

4.
McPhee JC  White RJ 《Acta Astronautica》2003,53(4-10):239-248
The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach.  相似文献   

5.
A viable spacelab programme is based on the thesis that biomedical specialists require a quantifiable, and possibly mechanistic, understanding of the significant changes observed in crew, in and after manned space flights. Only then can prophylaxis or atraumatic reversal be achieved (with potentially an added use to ameliorate qualitatively similar disease aspects on Earth). This approach could justify national funding to promote lead-up ground-based research as well as research and development for special equipment, of which the "spin-off" into clinical practice could well precede its first use in Spacelab. The requirement for "applied expediency" arises from the watershed met early in the evolution of a life-sciences programme. Initially, the facility of space flight provoked numerous valid experiments designed to test for, or quantitate, gravity-dependent mechanisms and their interaction with other agents, radiation, vibration, or absence of triggers for rhythmic patterns. In parallel, measurable parameters of man's function in space were being monitored, primarily to promote survival by remedial action when available. Monitoring data were then developed to find a critical mechanism feasible to testing. Often the rationale for such tests and experiments was that "man was there" and could, moreover, attend to several biological experiments in space! The watershed appeared when man in a Spacelab was shown as a hazard to the instrumentation, cleanliness, accuracy, thermal control, weight limits, etc. essential to the other disciplines. Other than the life sciences only the technological requirements of materials processing required a manned spacelab! So, life scientists have needed to rethink their payloads, and their constrictions, to plan for compatible load sharing. A composite of proposed biomedical projects related to apparently unanswered etiology of observed changes in returning astronauts will be used to illustrate the evolution of and possible answers to sample problems. The principles outlined, their moderation by expediency (with the untouched upon need for the enthusiastic involvement of biomedical potential in space projects) should remain our guidelines. This is in spite of the expected obsolescence of these specific projects within the next decade.  相似文献   

6.
This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented.  相似文献   

7.
Many aspects of the biomedical systems developed and realized aboard orbital stations, the International space station in the first place, deserve to be regarded as predecessors of the systems for health monitoring and maintenance of future exploration crews. At the same time, there are issues and tasks which have not been yet fully resolved. Specifically, these are prevention of the adverse changes in body systems and organs due to microgravity, reliable protection from the spectrum of space radiation, and elucidation of possible effects of hypomagnetic environment. We should not walk away from search and development of key biomedical technologies such as a system of automated fitness evaluation and a psychodiagnostic complex for testing and optimization of operator′s efficiency, and others. We have to address a large number of issues related to designing the composite life support systems of the utmost autonomy, closure and ecological safety of the human environment that will provide transformation of all kinds of waste. Another crucial task is to define a concept of the onboard medical center and dataware including the telemedicine technology. All the above developments should assimilate the most recent achievements in physiology, molecular biology, genetics, and advanced medical technologies. Biomedical researches on biosatellites also do not lose topicality.  相似文献   

8.
《Acta Astronautica》2008,62(11-12):1076-1084
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

9.
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

10.
Within the space program of the Federal Republic of Germany the microgravity program in connection with the utilization of SPACELAB constitutes a central task which determines the long-term program concepts and also their relation to German participation in future ESA programs.The scientific preparatory programs under way for some years now have made further progress. Extensive flight experience and valuable scientific results were obtained on the basis of successful rocket pre-programs. The present paper describes the process in which scientific and organisational priorities are being defined for the planning and execution of the experimental programs.In order to obtain a sufficient number of flight opportunities, payloads for SPACE SHUTTLE missions, in particular under the NASA GAS Program, as well as experimental equipment such as the materials laboratory (MSDR) for FSLP are being developed. The German program focuses on preparing a German SPACELAB mission D1 planned for 1985, which is intended to verify the applicability and efficiency of manned research laboratories for industry and the scientific community. A second emphasis is on preparing the use of SHUTTLE-supported re-usable space platforms.  相似文献   

11.
The recent biomedical investigations conducted on the Space Shuttle and Spacelab have provided a wealth of biomedical information, including the ability to test the efficacy of proposed countermeasures. This achievement was made possible by the ability to conduct mechanistic and control-interventive studies simultaneously with a large number of individuals over a relatively brief period and to compare these data with results obtained from the Skylab missions. Comparisons between short- and long-duration results were limited to establishing trends or extrapolating from short-duration missions. To date, we have evaluated several protocols involving the lower-body negative pressure (LBNP) device, the bicycle-ergometer, the treadmill and preparations for body-fluid replenishment. In many instances, the traditional means of applying these protocols were not sufficient to protect against space-related deconditioning. This paper will review current countermeasures and compare their efficacy to that of existing protocols. Results from in-flight and ground-based experiments will be presented to illuminate the recommended protocols and procedures.  相似文献   

12.
The results of biomedical investigations carried out in the U.S.S.R. manned space missions are discussed. Their basic result is well-documented evidence that man can perform space flights of long duration. The investigations have demonstrated no direct correlation between inflight or postflight physiological reactions of crewmembers and flight duration. In all likelihood, this can be attributed to the fact that special exercises done inflight efficiently prevented adverse effects of weightlessness. However, human reactions to weightlessness need further study. They include negative calcium balance and anemia as well as vestibulo-autonomic disorders shown by crewmembers at early stages of weightlessness. Attention should be given to psychological, social-psychological and ethical problems that may also limit further increase in flight duration.  相似文献   

13.
Eligar Sadeh   《Space Policy》2006,22(4):235-248
The public management dynamics of human spaceflight at NASA in the post-Apollo era—Space Shuttle, International Space Station, and the United States national vision for space exploration—are examined. A number of variables are applied to assess this. Public management processes are identified as a function of political accountability, organizational decision-making and cultures, and technical aspects directed at high reliability and safety of the large-scale, complex, and high-risk technologies that characterize NASA's human spaceflight programs. The findings indicate that these variables are causally linked to management outcomes through dynamics of centralized and decentralized organizational approaches. The success or failure of NASA's human spaceflight programs are linked to organizational management based on dynamics between centralized aspects of management, like controls over cost and schedule, and decentralized aspects, such as engineering authority over technical development.  相似文献   

14.
Changes in body fluids, electrolytes, and muscle mass are manifestations of adaptation to space flight and readaptation to the 1-g environment. The purposes of this paper are to review the current knowledge of biomedical responses to short- and long-duration space missions and to assess the efficacy of countermeasures to 1-g conditioning. Exercise protocols, fluid hydration, dietary and potential pharmacologic measures are evaluated, and directions for future research activities are recommended.  相似文献   

15.
Control of an orbital tether system that consists of two small spacecraft has been considered. The proposed control laws are based on the modification of well-known programs for the deployment of tether system systems under the assumption that the masses of spacecraft and the tether are comparable in magnitude. To construct nominal deployment programs, we have developed a mathematical model of the motion of the given system in an orbital moving coordinate system taking into account the specific features of this problem. The performance of the proposed deployment programs is assessed by a mathematical model of the orbital tether system with distributed parameters written in the geocentric coordinate system. The test calculations involve a linear regulator that implements feedback on the tether length and velocity.  相似文献   

16.
The barrier to low cost space programs has been identified, and we are it. Principal among the causes for escalation of space program costs is the ‘system’ which has evolved to control programs. The ‘system’ includes not only the procedures and documents that constitute the flow of paper, the reviews and approvals necessary to initiate actions, and the entire methodology of the decision-making and approval processes but, necessarily, the people, including political as well as industrial counterparts, who populate these environments. This complex ‘system’ has proliferated so that it now promotes time-taking routines, obstructs prompt action, inhibits decisions, extends schedules and escalates costs. Designed to aid and abet management by supplying information necessary to maintain cognizance of program status the ‘system’ has taken over the role of management. Problems and their solutions must now be addressed to the ‘system’ as aided and abetted by management.Most of the evident causes of program cost problems have long since been recognized. Attacking them will produce second-order effects until management is willing to face up to the internal cost driver.  相似文献   

17.
铆钉间距对二维SRAM蒙皮隐身性的影响分析   总被引:4,自引:0,他引:4  
首先分析了二维电磁散射问题的有限元算法理论,编写了相应计算程序;然后对一布置有两铆钉的二维SRAM蒙皮模型在铆钉间距为20、40和60mm情况下计算分析了铆钉间距对其隐身性能的影响,结果显示铆钉间距越大,蒙皮结构的隐身性能越好。  相似文献   

18.
介绍了美军机载电子攻击力量建设发展战略和构想,以及美军各军种对电子攻击型无人机的需求和建设思路。从选型和有效载荷两个方面讨论了美军主要电子攻击型无人机项目的发展现状。分析了电子攻击型无人机的作战优势。  相似文献   

19.
Since the beginning of the Space Age the public was fascinated by the great challenges that needed to be overcome, but also inspired by the potential benefits that might arise from the utilization of space systems. This lecture examines the major technological breakthroughs that were necessary for many of the key space programs to succeed, and postulates the immediate and future benefits to humanity that became evident as a result of these advances. A dozen programs ranging from Sputnik and Apollo to the Global Navigation Satellite System are reviewed in view of the technical challenges in elements such as propulsion, power, structures, computing, guidance and control, spectrum management and payloads. Challenges in the cost of space launch, large structures, debris mitigation, humans in space and commercial promise are discussed and opportunities for improvements in the future are postulated.  相似文献   

20.
Artificial gravitv generated by spacecraft rotation may prove a universal countermeasure against adverse effects of weightlessness in the future. The paper summarizes the results of ground-based biomedical investigations of artificial gravity and flight experiments aboard Soviet biosatellites Cosmos-782 and Cosmos-936. It is believed that at the present stage the major goal of such investigations is to determine the minimum efficient value of artificial gravity in long-term flights which may eliminate adverse effects of prolonged weightlessness. In ground-bound studies the highest priority should be given to the development of methods on increasing human tolerance to the rotating environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号