首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决荧光油膜灰度与厚度现标定方法(微小高度装置法)存在采集工况复杂、标定周期较长等缺陷,提出了一种新的近效测量方法,该方法只需极少量标定数据,便可达到与现标定方法相近的效果。近效方法利用了Elman动态神经网络对小样本数据进行量程扩展并引入一维插值算法使扩展后的数据项平滑,对解算出的三维荧光油膜厚度数据采用二维插值算法进行二次平滑以求得完整的厚度分布图。经模拟试验结果显示,通过该近效方法进行厚度测量最终可以清晰、准确、定量地显示荧光油膜厚度分布,与目前广泛使用的微小高度装置法相比效果相近,在荧光油膜汇集处(较厚区域)误差最大不超过±2.5μm,在平滑适中及较薄区域误差不超过±2μm,达到荧光油膜厚度工程测量标准,为飞行器全局摩阻测量提供了一种新标定思路,具有一定的实际工程应用意义。  相似文献   

2.
研究了运用荧光油膜技术测量全局表面摩擦应力的方法,引入金字塔迭代技术和模拟演化技术提出了该方法的优化求解算法,并通过平板绊线实验对以上方法进行了验证。以此为基础,通过两个典型的流动控制实验进一步探讨了荧光油膜技术在流动控制中的应用,其中包括采用不同参数锯齿形转捩带控制平板流动转捩的被动流动控制实验和不同激励频率下的后台阶零质量射流主动流动控制实验。以上实验测量结果表明,荧光油膜方法能够有效帮助理解流动机理并可用于评估流动控制策略。  相似文献   

3.
风洞试验模型表面的荧光油膜路径运动速度测量   总被引:2,自引:0,他引:2  
邹易峰  张征宇  王学渊  黄叙辉  范金磊 《航空学报》2019,40(6):122595-122595
风洞试验模型在气流脉动作用下小幅振动,导致光流法从荧光油膜时序图像中解得的荧光油膜路径运动速度含有模型运动速度,降低了荧光油膜全局摩阻测量准度。为此,提出试验模型表面的荧光油膜路径运动速度测量方法,将模型表面的背景纹理(如人工网格线或其他典型特征)作为基准,利用图像相关法离散匹配,获得相邻时序图像中背景纹理的(几何位姿)映射矩阵;基于模型运动的连续性,推导了映射矩阵的全局优化方程,并结合光流法,实现了模型振动与其表面荧光油膜路径运动的解耦。Oseen涡对的荧光油膜路径运动速度场仿真试验结果表明:在给定的平移旋转条件下,本文方法的计算结果(沿Oseen涡核连线分布的测量速度)与理论值的最大相对误差为4.1%,较无平移旋转条件下的光流计算结果最大相对误差仅增加0.6%。2 m量级高速风洞某空腔试验与机翼试验的荧光油膜路径运动速度测量结果进一步显示:本文方法测得的流动现象正确,能得到定量、清晰的表面摩擦应力线图谱与油膜路径运动速度场,较传统方法优势明显,工程应用价值大。  相似文献   

4.
本文提出了高速摄像系统用于火箭弹离轨参数测量的方法,对设备布站方案、测量原理以及数据处理方法进行讨论,并给出了具体的参数计算公式。  相似文献   

5.
虚拟仪器技术在飞机电源参数测试中的应用   总被引:1,自引:2,他引:1  
介绍了利用虚拟仪器技术设计、开发的飞机电源参数测试仪,它可对多种机型的电源系统的供电参数进行测量。实际应用表明,该虚拟仪器具有测量精度高、操作简便、功能强大、便于扩展等特点。  相似文献   

6.
平面激光诱导荧光显示火焰中OH的分布图像   总被引:4,自引:0,他引:4  
用平面激光诱导荧光技术测量了平面火焰炉、原子气化和超声速燃烧室的单脉冲激光诱导OH荧光。由平面荧光图可得到氢氧基相对浓度分布和它的厚度。由超声速燃烧室的OH荧光测量,可以看出不同时间OH分布的差别。氢氧基的PLIF图像是研究火焰结构和流场的有力工具。  相似文献   

7.
633nm碘稳定激光器作为长度基(标)准的比对测量   总被引:1,自引:0,他引:1  
简述作为长度基(标)准用的633nm碘稳定激光器的技术指标以及它的测量方法,文中以作者所进行的国际和国内比对中的测量结果为例,给出了这类激光器可以复现的频率或波长不确定度。  相似文献   

8.
CS-01高空台推力测量和校准装置研制   总被引:3,自引:1,他引:3  
推力是涡喷涡扇发动机高空模拟试验的重要测量参数之一。CS-01高空台原推力测量采用杠杆、砝码、测力秤系统,现采用原位校准,液压加载、应变式推力传感器来测量和校准,从而消除了“高度差”的影响,降低了稳态推力测量系统的测量不确定度。  相似文献   

9.
介绍了我站的红外探测器参数(黑体响应率,噪声、黑体探测率)自动测试系统以及参数测试关键技术的解决分析了这些参数测量不确定度。  相似文献   

10.
本文在论证比对基础上选取了弹丸气动参数辨识模型及弹道研究模型,并以某155mm榴弹为例,研究弹丸气动参数,攻角姿态及其测量误差对弹道特性与射表精度的影响,进行了大量对比计算和分析,据此对纸靶、太阳方位角传感器等攻角测量系统初步提出了较明确的测量度要求。  相似文献   

11.
本文介绍了以计算机为核心的某型坦克起动电机参数测量系统的组成及设计,使用表明,系统操作简单,抗干扰能力强,能准确测量和显示起动电机的输入电压,输出电流,输出扭矩及转速4个参数,较好地满足了某型坦克起动电机维修的要求。  相似文献   

12.
从纳米计量学与纳米计量测试的基本概念和基本要求出发,参考有关国外文献,编译了这篇文章,介绍纳米计量学和分子坐标测量机的研究成果。对从事这方面研究的科研人员具有一定的参考价值。文章中首先讨论纳米计量学的概念及其测量不确定度标准,实现,纳米计量的手段-建立分子坐标测量机;叙述了分子测量机设计概念和原则;并于分子测量机机械设计,主要讨论了隔离机械振动,热源,声振动等,二维导轨结构,探针安装结构选择等;计  相似文献   

13.
张正中 《飞行试验》1995,11(3):38-43
本文叙述了某飞机航弹挂架抛放时试验参数测定的摄影测量原理和方法,并进行了测量精度的分析,经过数据处理,从试验参数测量的结果来看,不仅达到了预期的目的,为在风洞试验中更好地模拟挂架投放初始条件提供了依据,而且还能从试验结果中进一步分析抛放燃爆弹的性能,找出存在的问题并加以改进。  相似文献   

14.
互耦影响下天线电参数的测量   总被引:1,自引:1,他引:0  
针对天线测量中的互耦影响,提出了一种计量方法;推导出一组用于互耦影响下测量天线增益、雷达散射截面等电参数的计算公式,定义了互耦因子。  相似文献   

15.
本文着重介绍光谱辐射法、激光诱导荧光法、静电探针法等接触式和非接触式测量技术在电弧加热发动机 (Arcjet)参数测量中的应用。讨论了电子温度、重粒子温度、羽流速度等参数的测量 ,并对一些结果进行了分析与论证 ,指出非热力学平衡态下不同的测量技术测量的是不同的温度指标。从测量技术的发展来看 ,激光测量技术将成为参数测量的主导技术。  相似文献   

16.
介绍了C-8587A型多参数表面粗糙度测量仪各项参数的定义、测量、数学模型、流程控制、功能特点,用单片机实现仪器的各项功能,利用宏汇编语言的编程技巧得以实现,表现了仪器的优越性。  相似文献   

17.
荧光油流摩擦力场测量技术可以得到模型表面的全局摩擦力信息。该技术基于传统荧光油流技术发展而来,运用荧光油流技术作为原始数据获取手段,对试验图像运用HS光学流动算法进行图像处理得到模型表面油膜厚度随时间轴的变化量,依据动量定理对油膜厚度变化量进行计算得到当地的相对摩擦力信息实现表面摩擦力的可视化测量。本文运用该技术在低速风洞中对平板模型、75°平板三角翼、平板-翼型角区三维模型的表面摩擦力场分布情况进行测量,得到各模型表面的相对摩擦力分布和摩擦力线,并与平板模型Blasius层流解和三角翼模型经典流场结构进行对比。试验结果表明:在低速环境下该测量技术可以应用于模型表面摩擦力的可视化测量,所得摩擦力分布及表面流动情况基本可靠。  相似文献   

18.
重力传感器参数的外场标定可充分发挥重力仪的测量潜力,提高重力测量的精度。利用全局可观性方法,对加速度计在静态条件下的参数可观性进行了分析,推导了静态多位置条件下加速度计参数可观的条件。根据理论推导的参数可观的条件,以双轴旋转重力仪为实验平台,设计了标定参数的编排方案。实验结果表明,该方法所测得的刻度因数对角线的最大偏差达到了10-8量级,利用对角线上的刻度因子修正了三轴转台的标定结果。2800s纯惯导解算结果证明,使用外场标定参数与实验室三轴转台标定参数的纯惯性导航精度相当。  相似文献   

19.
SM-2100瞬态信号采集与处理系统是从日本引进的大型成套设备。文简述了该系统的内部结构、分析功能和外部设备,并指出了它们的应用特点,着重介绍了在信号分析、炮风洞和激波管的参数测量、建筑物的振动分析及讲师标定等方面的应用情况,并有实际例证,尤其在炮风洞和激波管参数测量方面的应用,反应了该系统在快速、瞬态信号测量方面的应用价值,从而为进一步开发该系统的广泛应用领域提供了有效的途径。也在引进,消化,吸  相似文献   

20.
采用ArF准分子激光器作为激发光源来激励O2-Schumann—Runge带系(B^3∑^-u←X^3∑^-g)193.3nm附近的转动吸收谱线,用紫外光电倍增管探测该带系256nm附近的荧光信号,建立了ArF准分子激光器O2激光诱导荧光流场测试系统。在建立O2单带测温模型和软件的基础上,利用Schumann—Runge带系(10,2)带的荧光信号、测量了氧氩混合电弧加热射流的径向温度分布。结果表明:我们建立的ArF准分子激光器O2-LIF测试系统是成功的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号