首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Astronautica》2007,60(4-7):329-335
Based on anecdotal reports from astronauts and cosmonauts, studies of space analog environments on Earth, and our previous research on the Mir Space Station, a number of psychosocial issues have been identified that can lead to problems during long-duration space expeditions. Several of these issues were studied during a series of missions to the International Space Station. Using a mood and group climate questionnaire that was completed weekly by crewmembers in space and personnel in mission control, we found no evidence to support the presence of predicted decrements in well-being during the second half or in any specific quarter of the missions. The results did support the predicted displacement of negative feelings to outside supervisors among both crew and ground subjects. There were several significant differences in mood and group perceptions between Americans and Russians and between crewmembers and mission control personnel. Crewmembers related cohesion to the support role of their leader, and mission control personnel related cohesion to both the task and support roles of their leader. These findings are discussed with reference to future space missions.  相似文献   

2.
New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions.  相似文献   

3.
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program.

This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.  相似文献   


4.
《Acta Astronautica》2007,60(4-7):336-340
Individuals who adapt positively to an inhospitable or extreme environment can derive benefit from their experiences. This positive effect may include an initial improvement in mental health as someone adjusts to the environment (adaptation) as well as more sustained personal growth during the mission (salutogenesis). We review relevant findings from our prior work, including two post-mission surveys of astronauts and cosmonauts, and three studies of crewmembers during missions in a space station simulator, the Mir space station, and the International Space Station (ISS). We also present new analyses showing evidence for adaptation to ISS missions. This finding replicates our previous results from the simulation study, but this effect was not found on the Mir. A better understanding of psychological adaptation and salutogenesis during space flight should help us develop strategies to enhance crewmembers’ in-flight stress tolerance and post-flight adjustment.  相似文献   

5.
王磊  满广龙 《航天器工程》2012,21(2):108-113
文章对国内外航天器热控涂层在轨搭载飞行试验进行了调研,综述了利用和平号空间站、"国际空间站"、美国航天飞机、"长期暴露装置"等航天器进行的相关试验工作及主要的研究成果等。在此基础上提出了我国开展热控涂层搭载飞行试验的建议。  相似文献   

6.
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future.  相似文献   

7.
Joseph N. Pelton   《Space Policy》2010,26(4):246-248
The Space Transportation System (STS), for better or worse, has dominated the US space program for some 30 years and is now an American icon. The Space Shuttle orbiters have flown over 120 missions and certainly accomplished some amazing feats, including the deployment of the International Space Station (ISS), the launch and double repair of the Hubble Telescope, a number of classified missions for the US defense establishment and the cementing of international cooperation in space. As the remaining Space Shuttle orbiters head toward various museums, it is timely to look at the STS program in terms of key US space policy decisions that have paralleled the Space Shuttle’s often troubled history. This article seeks, from both a historical and a policy perspective, to assess what might have been. While noting the major accomplishments of the STS, it also identifies what can best be characterized as major lost opportunities and flawed policy decisions that have had multi-billion dollar consequences. In this regard, the US Congress, the White House, and NASA leadership have all played a role. If there have been failings, they have not been by NASA alone, but the entire US space policy leadership.  相似文献   

8.
The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark.  相似文献   

9.
This article presents a plan for reconfiguring the US-international Space Station, which could be used to undertake exploration of Mars. The author believes that there is an urgent need to give a unified purpose to the US Shuttle, Space Station and space science activities, and that planning for an international Mars sample return mission along the lines outlined here could start the US space programme moving again within budgetary requirements.  相似文献   

10.
A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.  相似文献   

11.
To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.  相似文献   

12.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   

13.
Although NASA's Space Shuttle is largely dedicated in the near term to Space Station assembly, 10–16 day flight opportunities still abound for spacecraft technology demonstration payloads, and experiments for the established earth and space science communities. This paper will present the latest developments of SPACEHAB flight systems in order to accommodate the flight needs of these communities on the Space Shuttle today and the Space Station tomorrow. In particular, some examples of payloads from these disciplines will be introduced together with the accommodation and experiment objectives.  相似文献   

14.
Uri JJ  Lebedev ON 《Acta Astronautica》2001,48(5-12):845-851
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success.  相似文献   

15.
Among the principal objectives of the Phase 1 NASA/Mir program were for the United States to gain experience working with an international partner, to gain working experience in long-duration space flight, and to gain working experience in planning for and executing research on a long-duration space platform. The Phase 1 program was to provide the US early experience prior to the construction and operation of the International Space Station (Phase 2 and 3). While it can be argued that Mir and ISS are different platforms and that programmatically Phase 1 and ISS are organized differently, it is also clear that many aspects of operating a long-duration research program are platform independent. This can be demonstrated by a review of lessons learned from Skylab, a US space station program of the mid-1970s, many of which were again “learned” on Mir and are being “learned” on ISS. Among these are optimum crew training strategies, on-orbit crew operations, ground support, medical operations and crew psychological support, and safety certification processes.  相似文献   

16.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   

17.
The started assembly of the International Space Station (ISS) and its further operation will call for a great number of extravehicular activity sorties (EVA) to be performed by ISS crews. Therefore, of great importance is to make use of the EVA experience gained by cosmonauts in the process of 15-year operation of the Mir orbiting station (OS). Over the 15-year period, Mir crewmembers wearing Orlan type semi-rigid space suits have accumulated 158 man/sorties from the orbiting station. Crewmembers used 15 suits in orbit and some of the suits were in operation for more than 3 years. The paper presents principal design features, which provide effective and safe operation of orbit-based suits, and briefly describes procedures for preparation and maintenance of suit systems, which ensure long-term operation of space suit in orbit. The paper gives results of the space suit modifications, presents suit performance characteristics and lists novel or upgraded components of the space suit and its systems. The paper also summarizes improvements in the Orlan type suits described in some earlier publications. They refer, in the first run, to the improvement of space suit operations characteristics and reliability, and the utilization of the Orlan type space suit in the ISS program. The paper analyses the experience gained and drawbacks detected and observations made, and gives statistical data on long-term space suit operations aboard the Mir station. The paper reviews certain problems in the process of EVAs performed from the station, and describes the ways of their solution as applied to the further utilization of the suit within the ISS program.  相似文献   

18.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

19.
Experience with the Shuttle and free-flying satellites as technology test beds has shown the feasibility and desirability of using space assets as facilities for technology development. Thus, by the time the space station era arrives, technologists will be ready for an accessible engineering facility in space. Along with the scientific and commercial space development communities, the technology development community has been participating in defining requirements for this in-space facility. As the 21st century is approached, it is expected that many flights to the Space Station Freedom will carry one or more RT&E experiments. The experiments are likely to utilize both the pressurized volume, and the external payload attachment facilities. Based on the success of instrumenting the Shuttle itself to obtain ascent and descent aerothermodynamic data a unique, but extremely important, class of experiments will use the space station itself as an experimental vehicle.  相似文献   

20.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号