首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Models of the four currently recognized regimes of astrochemistry are compared with observations. Ion-Molecule Gas Phase Chemistry is fundamental throughout all interstellar and circumstellar molecular clouds, and by itself explains fairly well the simpler molecular species in diffuse and cold quiescent dense interstellar clouds, as well as in the outer envelopes of circumstellar clouds. Dust-Grain Chemistry may modify ion-molecule chemistry noticeably in regions containing UV radiation, shocks, or other heating agents which can serve to promote surface reactions and to desorb molecules frozen on grains; it likely plays no role in cold quiescent clouds except to adsorb gas phase molecules. Shock Chemistry occurs in regions of star formation and appears important in explaining certain molecular species and in disrupting grains. Circumstellar envelopes combine several chemistries, including those of thermochemical equilibrium in the dense inner regions, and ion-molecule in the outer regions, with grain processes also likely. The limitations of all current models are lack of knowledge of reaction rates, of detailed physical conditions (interstellar clouds), and of the relative depletions (onto grains) of the chemical elements, as well as grain surface chemistry in general. In both interstellar and circumstellar objects, ion-molecule gas phase models are now quite successful in explaining, semi-quantitatively, observed species with up to 4 atoms, but difficulties remain for larger species, as well as the state of carbon, and the models are not yet very predictive.NRAO is operated by Associated Universities Inc. under contract with NSF.  相似文献   

2.
The instruments on board the Infrared Space Observatory have for the first time allowed a complete low (PHOT, CVF) to medium resolution (SWS) spectroscopic harvest, from 2.5 to 45 μm, of interstellar dust. Amongst the detected solids present in starless molecular clouds surrounding recently born stellar and still embedded objects or products of the chemistry in some mass loss envelopes, the so-called “ice mantles” are of specific interest. They represent an interface between the very refractory carbonaceous and silicates materials that built the first grains with the rich chemistry taking place in the gas phase. Molecules condense, react on ices, are subjected to UV and cosmic ray irradiation at low temperatures, participating efficiently to the evolution toward more complex molecules, being in constant interaction in an ice layer. They also play an important role in the radiative transfer of molecular clouds and strongly affect the gas phase chemistry. ISO results shed light on many other species than H2O ice. The detection of these van der Waal's solids is mainly performed in absorption. Each ice feature observed by ISO spectrometer is an important species, with abundance in the 10−4–10−7 range with respect to H2. Such high abundances represent a substantial reservoir of matter that, once released later on, replenishes the gas phase and feeds the ladder of molecular complexity. Medium resolution spectroscopy also offers the opportunity to look at individual line profiles of the ice features, and therefore to progressively reveal the interactions taking place in the mantles. This article will give a view on selected results to avoid to overlap with the numerous reviews the reader is invited to consult (e.g. van Dishoeck, in press; Gibb et al., 2004.). Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

3.
The interstellar cloud surrounding the solar system regulates the galactic environment of the Sun, and determines the boundary conditions of the heliosphere. Both the Sun and interstellar clouds move through space, so these boundary conditions change with time. Data and theoretical models now support densities in the cloud surrounding the solar system of n(H0)=0.22±0.06 cm−3, and n(e−)∼0.1 cm−3, with larger values allowed for n(H0) by radiative transfer considerations. Ulysses and Extreme Ultraviolet Explorer satellite He0 data yield a cloud temperature of 6400 K. Nearby interstellar gas appears to be structured and inhomogeneous. The interstellar gas in the Local Fluff cloud complex exhibits elemental abundance patterns in which refractory elements are enhanced over the depleted abundances found in cold disk gas. Within a few parsecs of the Sun, inconclusive evidence for factors of 2–5 variation in Mg+ and Fe+ gas phase abundances is found, providing evidence for variable grain destruction. In principle, photoionization calculations for the surrounding cloud can be compared with elemental abundances found in the pickup ion and anomalous cosmic-ray populations to model cloud properties, including ionization, reference abundances, and radiation field. Observations of the hydrogen pile up at the nose of the heliosphere are consistent with a barely subsonic motion of the heliosphere with respect to the surrounding interstellar cloud. Uncertainties on the velocity vector of the cloud that surrounds the solar system indicate that it is uncertain as to whether the Sun and α Cen are or are not immersed in the same interstellar cloud. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The differences between the composition of Galactic cosmic rays and that of the interstellar medium are manifold, and they contain a wealth of information about the varying processes that created them. These differences reveal much about the initial mixing of freshly synthesized matter, the chemistry and differentiation of the interstellar medium, and the mechanisms and environment of ion injection and acceleration. Here we briefly explore these processes and show how they combine to create the peculiar, but potentially universal, composition of the cosmic rays and how measurements of the composition can provide a unique measure of the mixing ratio of the fresh supernova ejecta and the old interstellar medium in this initial phase of interstellar mixing. In particular, we show that the major abundance differences between the cosmic rays and the average interstellar medium can all result from cosmic ray ion injection by sputtering and scattering from fast refractory oxide grains in a mix of fresh supernova ejecta and old interstellar material. Since the bulk of the Galactic supernovae occur in the cores of superbubbles, the bulk of the cosmic rays are accelerated there out of such a mix. We show that the major abundance differences all imply a mixing ratio of the total masses of fresh supernova ejecta and old interstellar material in such cores is roughly 1 to 4. That means that the metallicity of ∼3 times solar, since the ejecta has a metallicity of ∼8 times that of the present interstellar medium.  相似文献   

5.
Infrared spectroscopy and photometry with ISO covering most of the emission range of the interstellar medium has led to important progress in the understanding of the physics and chemistry of the gas, the nature and evolution of the dust grains and also the coupling between the gas and the grains. We review here the ISO results on the cool and low-excitation regions of the interstellar medium, where T gas≲ 500 K, n H∼ 100–105 cm−3 and the electron density is a few 10−4. JEL codes: D24, L60, 047 Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

6.
The properties of interstellar matter at the Sun are regulated by our location with respect to a void in the local matter distribution, known as the Local Bubble. The Local Bubble (LB) is bounded by associations of massive stars and fossil supernovae that have disrupted dense interstellar matter (ISM), driving low density intermediate velocity ISM into the void. The Sun appears to be located in one of these flows of low density material. This nearby interstellar matter, dubbed the Local Fluff, has a bulk velocity of ∼19 km s−1 in the local standard of rest. The flow is coming from the direction of the gas and dust ring formed where the Loop I supernova remnant merges into the LB. Optical polarization data suggest that the local interstellar magnetic field lines are draped over the heliosphere. A longstanding discrepancy between the high thermal pressure of plasma filling the LB and low thermal pressures in the embedded Local Fluff cloudlets is partially mitigated when the ram pressure component parallel to the cloudlet flow direction is included.  相似文献   

7.
The modern theory of cometary dynamics is based on Oort's hypothesis that the solar system is surrounded by a spherically symmetric cloud of 1011 to 1012 comets extending out to interstellar distances. Dynamical modeling and analysis of cometary motion have confirmed the ability of the Oort hypothesis to explain the observed distribution of energies for the long-period comet orbits. The motion of comets in the Oort cloud is controlled by perturbations from random passing stars, interstellar clouds, and the galactic gravitational field. Additionally, comets which enter the planetary region are perturbed by the major planets and by nongravitational forces resulting from jetting of volatiles on the surfaces of the cometary nuclei. The current Oort cloud is estimated to have a radius of 6 to 8 × 104 AU, and to contain some 2 × 1012 comets with a total mass of 7 to 8 Earth masses. Evidence has begun to accumulate for the existence of a massive inner Oort cloud extending from just beyond the orbit of Neptune to 104 AU or more, with a population up to 100 times that of the outer Oort cloud. This inner cloud may serve as a reservoir to replenish the outer cloud as comets are stripped away by the various perturbers, and may also provide a more efficient source for the short-period comets. Recent suggestions of an unseen solar companion star or a tenth planet orbiting in the inner cloud and causing periodic comet showers on the Earth are likely unfounded. The formation site of the comets in the Oort cloud was likely the extended nebula accretion disc reaching from about 15 to 500 AU from the forming protosun. Comets which escape from the Oort cloud contribute to the flux of interstellar comets, though capture of interstellar comets by the solar system is extremely unlikely. The existence of Oort clouds around other main sequence stars has been suggested by the detection by the IRAS spacecraft of cool dust shells around about 10% of nearby stars.  相似文献   

8.
WIND Observations of Suprathermal Electrons in the Interplanetary Medium   总被引:1,自引:0,他引:1  
Lin  R.P. 《Space Science Reviews》1998,86(1-4):61-78
We review some of the new results for suprathermal electrons obtained with the 3-D Plasma and Energetic Particle Instrument on the WIND spacecraft, which provides high sensitivity electron and ion measurements from solar wind thermal plasma up to ≳MeV energies. These results include: (1) the observation of solar impulsive electron events extending down to ∼0.5 keV energy; (2) the observation of a turnover at ∼12 keV for electrons in a gradual large solar energetic particle (LSEP) event; (3) the detection of a quiet-time population (the ‘superhalo’) of electrons extending up to ∼100 keV energy; and (4) the probing of the magnetic topology and source region for magnetic clouds, using electrons. These unique WIND measurements are highly complementary to the particle composition measurements which will be made by ACE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Millar  T. J. 《Space Science Reviews》2003,106(1-4):73-86
This paper reviews the chemical processes responsible for fractionating deuterium in interstellar molecules. I show that this process is intrinsically a low temperature phenomenon and discuss how the degree of enhancement of the deuterium content of molecules is related to the physical conditions, particularly abundances, in molecular clouds. If significant amounts of abundant species, such as CO, are frozen out on to interstellar dust grains, the resulting enhancement in H2D+ can result in its abundance being greater than that of H 3 + at 10K. Transfer of the deuteron from H2D+ can then lead to the efficient formation of multiply deuterated species, such as NHD2 and ND3. Fractionation can also occur in grain surface reactions and some simple models are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We consider four aspects of interstellar chemistry for comparison with comets: molecular abundances in general, relative abundances of isomers (specifically, HCN and HNC), ortho/para ratios for molecules, and isotopic fractionation, particularly for the ratio hydrogen/deuterium. Since the environment in which the solar system formed is not well constrained, we consider both isolated dark clouds where low mass stars may form and the "hot cores" that are the sites of high mass star formation. Attention is concentrated on the gas phase, since the grains are considered elsewhere in this volume. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The GHRS has obtained high-resolution spectra of interstellar gas toward 19 nearby stars. These excellent data show that the Sun is located inside the Local Interstellar Cloud (LIC) with other warm clouds nearby. I will summarize the physical properties of these clouds and the three-dimensional structure of this warm interstellar gas. There is now clear evidence that the Sun and other late-type stars are surrounded by hydrogen walls in the upwind direction. The D/H ratio probably has a constant value in the LIC, (1.6 ± 0.2) × 10–5, consistent with the measured values for all LIC lines of sight.  相似文献   

12.
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The present state of knowledge as regards interstellar dust is reviewed in Section 1 (Introduction); Section 2 (Composition of Dust Grains: graphite, silicate, dirty-ice, diamond); Section 3 (Size of Grains: mainly r 10–6 cm); Section 4 (Charge and Temperature of Grains: charge varies from 1–10 electrons (H i clouds) to 500 electrons (H ii clouds); temperature of grain material is about 10–20 K); Section 5 (Distribution and Origin of Grains: confined mainly to discs and arms of spiral galaxies, having had a passive origin by efflux from late-type stars or carbon-stars); Section 6 (Cosmogonical and Cosmological Aspects of Interstellar Grains: accretion by electrical-image forces of one dust grain onto a similarly-charged grain links up the absence of dust and gas in elliptical galaxies with the absence of a magnetic field of the type found in spirals. The origin of the 3 K background radiation field could be produced by a population of rotating silicate grains of r 10–7 cm); Section 7 (Conclusion).  相似文献   

15.
The Advanced Composition Explorer   总被引:2,自引:0,他引:2  
Stone  E.C.  Frandsen  A.M.  Mewaldt  R.A.  Christian  E.R.  Margolies  D.  Ormes  J.F.  Snow  F. 《Space Science Reviews》1998,86(1-4):1-22
The Advanced Composition Explorer was launched August 25, 1997 carrying six high-resolution spectrometers that measure the elemental, isotopic, and ionic charge-state composition of nuclei from H to Ni (1≤Z≤28) from solar wind energies (∼1 keV nucl−1) to galactic cosmic-ray energies (∼500 MeV nucl−1). Data from these instruments is being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. ACE also carries three instruments that provide the heliospheric context for ion composition studies by monitoring the state of the interplanetary medium. From its orbit about the Sun-Earth libration point ∼1.5 million km sunward of Earth, ACE also provides real-time solar wind measurements to NOAA for use in forecasting space weather. This paper provides an introduction to the ACE mission, including overviews of the scientific goals and objectives, the instrument payload, and the spacecraft and ground systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
An accurate value of the D/H ratio in the local interstellar medium (LISM) and a better understanding of the D/H variations with position in the Galactic disk and halo are vitally important questions as they provide information on the primordial D/H ratio in the Galaxy at the time of the protosolar nebula, and the amount of astration and mixing in the Galaxy over time. Recent measurements have been obtained with UV spectrographs on FUSE, HST, and IMAPS using hot white dwarfs, OB stars, and late-type stars as background light sources against which to measure absorption by D and H in the interstellar medium along the lines of sight. Recent analyses of FUSE observations of seven white dwarfs and subdwarfs provide a weighted mean value of D/H = (1.52±0.08) × 10−5 (15.2 ± 0.8 ppm), consistent with the value of (1.50 ± 0.10) × 10−5 (15.0 ± 1.0 ppm) obtained from analysis of lines of sight toward nearby late-type stars. Both numbers refer to the ISM within about 100 pc of the Sun, which samples warm clouds located within the Local Bubble. Outside of the Local Bubble at distances of 200 to 500 pc, analyses of far-UV spectra obtained with the IMAPS instrument indicate a much wider range of D/H ratios between 0.8 to 2.2 ppm. This portion of the Galactic disk provides information on inhomogeneous astration in the Galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
We are making precise determinations of the abundance of the light isotope of helium, 3He. The 3He abundance in Milky Way sources impacts stellar evolution, chemical evolution, and cosmology. The abundance of 3He is derived from measurements of the hyperfine transition of 3He+ which has a rest wavelength of 3.46 cm (8.665 GHz). As with all the light elements, the present interstellar 3He abundance results from a combination of Big Bang Nucleosynthesis (BBNS) and stellar nucleosynthesis. We are measuring the 3He abundance in Milky Way H ii regions and planetary nebulae (PNe). The source sample is currently comprised of 60 H ii regions and 12 PNe. H ii regions are examples of zero-age objects that are young relative to the age of the Galaxy. Therefore their abundances chronicle the results of billions of years of Galactic chemical evolution. PNe probe material that has been ejected from low-mass (M≤ 2M ) to intermediate-mass (M∼2–5M ) stars to be further processed by future stellar generations. Because the Milky Way ISM is optically thin at centimeter wavelengths, our source sample probes a larger volume of the Galactic disk than does any other light element tracer of Galactic chemical evolution. The sources in our sample possess a wide range of physical properties (including object type, size, temperature, excitation, etc.). The 3He abundances we derive have led to what has been called “The 3He Problem”.  相似文献   

18.
Measurements below several MeV/nucleon from Wind/LEMT and ACE/ULEIS show that elements heavier than Zn (Z=30) can be enhanced by factors of ∼100 to 1000, depending on species, in 3He-rich solar energetic particle (SEP) events. Using the Solar Isotope Spectrometer (SIS) on ACE we find that even large SEP (LSEP) shock-accelerated events at energies from ∼10 to >100 MeV/nucleon are often very iron rich and might contain admixtures of flare seed material. Studies of ultra-heavy (UH) SEPs (with Z>30) above 10 MeV/nucleon can be used to test models of acceleration and abundance enhancements in both LSEP and 3He-rich events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. Although most of the UH fluence arrives during LSEP events, UH abundances are relatively more enhanced in 3He-rich events, with the (34<Z<40)/O ratio on average more than 50 times higher in 3He-rich events than in LSEP events. At energies >10 MeV/nucleon, the most extreme event in terms of UH composition detected so far took place on 23 July 2004 and had a (34<Z<40)/O enhancement of ∼250–300 times the standard solar value.  相似文献   

19.
Pickup ions measured deep inside the heliosphere open a new way to determine the absolute atomic density of a number of elements and isotopes in the local interstellar cloud (LIC). We derive the atomic abundance of hydrogen and the two isotopes of helium from the velocity and spatial distributions of interstellar pickup protons and ionized helium measured with the Solar Wind Ion Composition Spectrometer (SWICS) on the Ulysses spacecraft between 2 and 5 AU. The atomic hydrogen density near the termination shock derived from interstellar pickup ion measurements is 0.115±0.025 cm–3 and the atomic H/He ratio from these observations is found to be 7.7 ± 1.3 in the outer heliosphere. Comparing this value with the standard universal H/He ratio of 10 we conclude that filtration of hydrogen is small and that the ionization fraction of hydrogen in the LIC is low.  相似文献   

20.
As comet 9P/Tempel 1 approaches the Sun in 2004–2005, a temporary atmosphere, or “coma,” will form, composed of molecules and dust expelled from the nucleus as its component icy volatiles sublimate. Driven mainly by water ice sublimation at surface temperatures T > 200 K, this coma is a gravitationally unbound atmosphere in free adiabatic expansion. Near the nucleus (≤ 102 km), it is in collisional equilibrium, at larger distances (≥104 km) it is in free molecular flow. Ultimately the coma components are swept into the comet’s plasma and dust tails or simply dissipate into interplanetary space. Clues to the nature of the cometary nucleus are contained in the chemistry and physics of the coma, as well as with its variability with time, orbital position, and heliocentric distance. The DI instrument payload includes CCD cameras with broadband filters covering the optical spectrum, allowing for sensitive measurement of dust in the comet’s coma, and a number of narrowband filters for studying the spatial distribution of several gas species. DI also carries the first near-infrared spectrometer to a comet flyby since the VEGA mission to Halley in 1986. This spectrograph will allow detection of gas emission lines from the coma in unprecedented detail. Here we discuss the current state of understanding of the 9P/Tempel 1 coma, our expectations for the measurements DI will obtain, and the predicted hazards that the coma presents for the spacecraft. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号