首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of determining the uncontrolled rotational motion of the Foton M-2 satellite (in orbit from May 31 to June 16, 2005) are presented. The determination was made using the data of onboard measurements of the Earth’s magnetic field strength. Segments 270 min long (three orbits) were selected from these data covering the first two thirds of the flight. On each such segment the data were processed jointly by the least squares method using integration of the equations of attitude motion of the satellite. In processing, the initial conditions of motion and parameters of the used mathematical model were estimated. The thus obtained results gave a complete overview of the satellite motion. This motion, having started with a small angular velocity, gradually accelerated, and in two days became close to the regular Euler precession of an axisymmetric solid body. On June 09, 2005 (the last day of measurements) the angular velocity of the satellite relative to its lengthwise axis was about 1.1 deg/s, while the projection of the angular velocity onto a plane perpendicular to this axis had an absolute value of about 0.11 deg/s. Deviations of the lengthwise axis from a normal to the orbit plane did not exceed 60°. Based on the results of determination of the rotational motion of the satellite, calculations of quasi-static microaccelerations on its board are performed.  相似文献   

2.
The results of determination of the uncontrolled attitude motion of the Foton-12 satellite (placed in orbit on September 9, 1999, terminated its flight on September 24, 1999) are presented. The determination was carried out by the onboard measurement data of the Earth's magnetic field strength vector. Intervals with a duration of several hours were selected from data covering almost the entire flight. On each such interval the data were processed simultaneously using the least squares method by integrating the satellite's equations of motion with respect to the center of mass. The initial conditions of motion and the parameters of the mathematical model employed were estimated in processing. The results obtained provided for a complete representation of the satellite's motion during the flight. This motion, beginning with a small angular velocity, gradually sped up. The growth of the component of the angular velocity with respect to the longitudinal axis of the satellite was particularly strong. During the first several days of the flight this component increased virtually after every passage through the orbit's perigee. As the satellite's angular velocity increased, its motion became more and more similar to the regular Euler precession of an axisymmetric rigid body. In the last several days of flight the satellite's angular velocity with respect to its longitudinal axis was about 1 deg/s and the projection of the angular velocity onto the plane perpendicular to this axis had a magnitude of approximately 0.15 deg/s. The deviation of the longitudinal axis from the normal to the orbit plane did not exceed 60°. The knowledge of the attitude motion of the satellite allowed us to determine the quasi-steady microacceleration component onboard it at the locations of the technological and scientific equipment.  相似文献   

3.
The results of reconstruction of rotational motion of the Foton M-3 satellite during its uncontrolled flight in September 2007 are presented. The reconstruction was performed by processing the data of onboard measurements of the Earth’s magnetic field obtained by the DIMAC instruments. The measurements were carried out continuously throughout the flight, but the processing technique dealt with the data portions covering time intervals of a few orbital revolutions. The data obtained on each such interval were processed jointly by the least squares method with using integration of the equations of satellite motion relative to its center of mass. When processing, the initial conditions of motion and the used mathematical model’s parameters were estimated. The results of processing 16 data sets gave us complete information about the satellite motion. This motion, which began at a low angular velocity, had gradually accelerated and in five days became close to the regular Euler precession of an axisymmetric solid body. At the end of uncontrolled flight the angular velocity of the satellite relative to its lengthwise axis was 0.5 deg/s; the angular velocity projection onto the plane perpendicular to this axis had a magnitude of about 0.18 deg/s.  相似文献   

4.
The method and the results of investigating the low-frequency component of microaccelerations onboard the Foton-11satellite are presented. The investigation was based on the processing of data of the angular velocity measurements made by the German system QSAM, as well as the data of measurements of microaccelerations performed by the QSAM system and by the French accelerometer BETA. The processing was carried out in the following manner. A low-frequency (frequencies less than 0.01 Hz) component was selected from the data of measurements of each component of the angular velocity vector or of the microacceleration, and an approximation was constructed of the obtained vector function by a similar function that was calculated along the solutions to the differential equations of motion of the satellite with respect to its center of mass. The construction was carried out by the least squares method. The initial conditions of the satellite motion, its aerodynamic parameters, and constant biases in the measurement data were used as fitting parameters. The time intervals on which the approximation was constructed were from one to five hours long. The processing of the measurements performed with three different instruments produced sufficiently close results. It turned out to be that the rotational motion of the satellite during nearly the entire flight was close to the regular Eulerian precession of the axially symmetric rigid body. The angular velocity of the satellite with respect to its longitudinal axis was about 1 deg/s, while the projection of the angular velocity onto the plane perpendicular to this axis had an absolute value of about 0.2 deg/s. The magnitude of the quasistatic component of microaccelerations in the locations of the accelerometers QSAM and BETA did not exceed 5 × 10–5–10–4m/s2for the considered motion of the satellite.  相似文献   

5.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   

6.
The results of determining the rotational motion of the Mir orbital station are presented for four long segments of its unmanned uncontrolled flight in 1999–2000. The determination was carried out using the data of onboard measurements of the Earth's magnetic field intensity. These data, taken for a time interval of several hours, were jointly processed by the least squares method with the help of integration of the equations of station motion relative to its center of mass. As a result of this processing, the initial conditions of motion and the parameters of the mathematical model used were evaluated. The technique of processing is verified using the telemetry data on angular velocity of the station and its attitude parameters. Two types of motion were applied on the investigated segments. One of them (three segments) presents a rotation around the axis of the minimum moment of inertia. This axis executes small oscillations with respect to a normal to the orbit plane. Such a motion was used for the first time on domestic manned orbital complexes. The second type of motion begins with a biaxial rotation which, in a few weeks, goes over into a motion very similar to the rotation around the normal to the orbit plane, but around the axis of the maximum moment of inertia.  相似文献   

7.
The mode of spinning up a low-orbit satellite in the plane of its orbit is studied. In this mode, the satellite rotates around its longitudinal axis (principal central axis of the minimum moment of inertia), which executes small oscillations with respect to the normal to the orbit plane; the angular velocity of the rotation around the longitudinal axis is several tenths of a degree per second. Gravitational and restoring aerodynamic moments were taken into account in the equations of satellite’s motion, as well as a dissipative moment from eddy currents induced in the shell of the satellite by the Earth’s magnetic field. A small parameter characterizing deviation of the satellite from a dynamically symmetric shape and nongravitational external moments are introduced into the equations. A two-dimensional integral surface of the equations of motion, describing quasistationary rotations of the satellite close to cylindrical precession of the corresponding symmetrical satellite in a gravitational field, has been studied by the method of small parameter and numerically. We propose to consider such quasistationary rotations as unperturbed motions of the satellite in the spin-up mode.  相似文献   

8.
An integral statistical procedure of determination of the attitude motion of a satellite using the data of onboard measurements of angular velocity vectors and the strength of the Earth’s magnetic field (EMF) is suggested. The procedure uses only the equations of kinematics of a solid body and is applicable to determining both controlled and uncontrollable motions of a satellite at any external mechanical moments acting upon it. When applying this procedure, the data of measurements of both types, accumulated during a certain interval of time, are processed jointly. The data of measuring the angular velocity are smoothed by discrete Fourier series, and these series are substituted into kinematical Poisson equations for elements of the matrix of transition from a satellite-fixed coordinate system to the orbital coordinate system. The equations thus obtained represent a kinematical model of the satellite motion. The solution to these equations (which approximate the actual motion of a satellite) is found from the condition of the best (in the sense of the least squares method) fit of the data of measuring the EMF strength vector to its calculated values. The results of testing the suggested procedure using the data of measurements of the angular velocity vectors onboard the Foton-12 satellite and measurements of EMF strengths are presented.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 295–305.Original Russian Text Copyright © 2005 by Abrashkin, Volkov, Voronov, Egorov, Kazakova, Pankratov, Sazonov, Semkin.  相似文献   

9.
The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth’s magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth’s magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth’s magnetic field. Their coincidence turned out to be rather accurate.  相似文献   

10.
The results of the determination of the uncontrolled attitude motion of the International Space Station during its unmanned flight in 1999 are presented. The data of onboard measurements of three components of the angular velocity are used for this determination. These data covering an interval of slightly less than one orbit were jointly processed by the least squares method, by integrating the equations of motion of the station relative to its center of mass. As a result of this processing, the initial conditions of the motion and the parameters of the mathematical model used were estimated. The actual motion of the station has been determined for 20 such intervals during April–November. Throughout these intervals, the station rotated about the axis of the minimum moment of inertia, the latter executing small oscillations relative to the local vertical. Such a mode, known as the mode of gravitational orientation of a rotating satellite or the mode of generalized gravitational orientation, was planned before the flight. The measurements were made to verify it. The quasistatic component of the microaccelerations aboard the station is estimated for this mode.  相似文献   

11.
The actual controlled rotational motion of the Foton M-4 satellite is reconstructed for the mode of single-axis solar orientation. The reconstruction was carried out using data of onboard measurements of vectors of angular velocity and the strength of the Earth’s magnetic field. The reconstruction method is based on the reconstruction of the kinematic equations of the rotational motion of a solid body. According to the method, measurement data of both types collected at a certain time interval are processed together. Measurements of the angular velocity are interpolated by piecewise-linear functions, which are substituted in kinematic differential equations for a quaternion that defines the transition from the satellite instrument coordinate system to the inertial coordinate system. The obtained equations represent the kinematic model of the satellite rotational motion. A solution of these equations that approximates the actual motion is derived from the condition of the best (in the sense of the least squares method) match between the measurement data of the strength vector of the Earth’s magnetic field and its calculated values. The described method makes it possible to reconstruct the actual rotational satellite motion using one solution of kinematic equations over time intervals longer than 10 h. The found reconstructions have been used to calculate the residual microaccelerations.  相似文献   

12.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   

13.
A new mathematical model of the uncontrolled rotational motion of the Foton satellite is presented. The model is based on the Euler dynamic equations of rigid body motion and takes into account the action upon the satellite of four external mechanical moments: gravitational, restoring aerodynamic, moment with constant components in the satellite-fixed coordinate system, and moment arising due to interaction of the Earth’s magnetic field with the satellite’s proper magnetic moment. To calculate the aerodynamic moment a special geometrical model of the outer satellite shell is used. Detailed form of the formulas giving above-mentioned moments in the equations of satellite motion is agreed with the form of the considered motion. Model testing is performed by determining with its help the rotational motion of the Foton M-2 satellite (it was in orbit from May 31, 2005 to June 16, 2005) using the data of the onboard measurements of the Earth’s magnetic field strength. The use of the new model has led to a relatively small improvement in the accuracy of the motion determination, but allowed us to obtain physically real estimates of some parameters.  相似文献   

14.
We investigate the mode of spinning up a low-orbit satellite in the plane of its orbit. In this mode the satellite rotates around its principal central axis of the minimum moment of inertia which executes small oscillations with respect to the normal to the orbit plane; the angular velocity of the rotation around this axis several times exceeds the mean orbital motion. Gravitational and restoring aerodynamic moments are taken into account in the satellite’s equations of motion. A small parameter characterizing deviation of the satellite from a dynamically symmetric shape is introduced into the equations. A two-dimensional integral surface of the equations of motion, describing quasi-steady-state rotations of the satellite close to cylindrical precession of the corresponding symmetrical satellite in a gravitational field, has been studied by the method of small parameter and numerically. Such quasi-steady-state rotations are suggested to be considered as unperturbed motions of the satellite in the spin-up mode. Investigation of the integral surface is reduced to numerical solution of a periodic boundary value problem of a certain auxiliary system of differential equations and to calculation of quasi-steady-state rotations by the two-cycle method. A possibility is demonstrated to construct quasi-steady rotations by way of minimization of a special quadratic functional.  相似文献   

15.
Vetlov  V. I.  Novichkova  S. M.  Sazonov  V. V.  Chebukov  S. Yu. 《Cosmic Research》2000,38(6):588-598
A mode of motion of a satellite with respect to its center of mass is studied, which is called the biaxial rotation in the orbit plane. In this mode of rotation, an elongated and nearly dynamically symmetric satellite rotates around the longitudinal axis, which, in turn, rotates around the normal to the plane of an orbit; the angular velocity of rotation around the longitudinal axis is several times larger than the orbital angular velocity, deviations of this axis from the orbit plane are small. Such a rotation is convenient in the case when it is required to secure a sufficiently uniform illumination of the satellite's surface by the Sun at a comparatively small angular velocity of the satellite. The investigation consists of the numerical integration of equations of the satellite's motion, which take into account gravitational and restoring aerodynamic moments, as well as the evolution of the orbit. At high orbits, the mode of the biaxial rotation is conserved for an appreciable length of time, and at low orbits it is destroyed due to the impact of the aerodynamic moment. The orbit altitudes and the method of constructing the initial conditions of motion that guarantee a sufficiently prolonged period of existence of this mode are specified.  相似文献   

16.
The mode of monoaxial solar orientation of a designed artificial Earth satellite (AES), intended for microgravitational investigations, is studied. In this mode the normal line to the plane of satellite’s solar batteries is permanently directed at the Sun, the absolute angular velocity of a satellite is virtually equal to zero. The mode is implemented by means of an electromechanical system of powered flywheels or gyrodynes. The calculation of the level of microaccelerations arising on board in such a mode, was carried out by mathematical modeling of satellite motion with respect to the center of masses under an effect of gravitational and restoring aerodynamic moments, as well as of the moment produced by the gyrosystem. Two versions of a law for controlling the characteristic angular momentum of a gyrosystem are considered. The first version provides only attenuation of satellite’s perturbed motion in the vicinity of the position of rest with the required velocity. The second version restricts, in addition, the increase in the accumulated angular momentum of a gyrosystem by controlling the angle of rotation of the satellite around the normal to the light-sensitive side of the solar batteries. Both control law versions are shown to maintain the monoaxial orientation mode to a required accuracy and provide a very low level of quasistatic microaccelerations on board the satellite.  相似文献   

17.
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.  相似文献   

18.
The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or “-Bdot” without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.  相似文献   

19.
Non-standard situation on a spacecraft (Earth’s satellite) is considered, when there are no measurements of the spacecraft’s angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft’s attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft’s angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft’s angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft’s rotational motion.  相似文献   

20.
Quasi-static microaccelerations of four satellites of the Foton series (nos. 11, 12, M-2, M-3) were monitored as follows. First, according to measurements of onboard sensors obtained in a certain time interval, spacecraft rotational motion was reconstructed in this interval. Then, along the found motion, microacceleration at a given onboard point was calculated according to the known formula as a function of time. The motion was reconstructed by the least squares method using the solutions to the equations of satellite rotational motion. The time intervals in which these equations make reconstruction possible were from one to five orbital revolutions. This length is increased with the modulus of the satellite angular velocity. To get an idea on microaccelerations and satellite motion during an entire flight, the motion was reconstructed in several tens of such intervals. This paper proposes a method for motion reconstruction suitable for an interval of arbitrary length. The method is based on the Kalman filter. We preliminary describe a new version of the method for reconstructing uncontrolled satellite rotational motion from magnetic measurements using the least squares method, which is essentially used to construct the Kalman filter. The results of comparison of both methods are presented using the data obtained on a flight of the Foton M-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号