首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   

2.
The ionospheric effects induced by the September 2017 storm have been exceptional compared to other events in the solar cycle 24. This paper gathers results of the ionospheric observations at the European middle latitude station Pruhonice. It consists of evaluation of ionospheric vertical and oblique sounding, Digisonde drift measurement, and data obtained from the Continuous Doppler Sounding System. We observed strong ionospheric response with an unusual stratification of ionospheric layers, Large Scale Traveling ionospheric disturbances, changes in electron density, and increase and oscillations in plasma drift velocity.  相似文献   

3.
本文用遍布全球的52个电离层垂测台站资料,研究1958年7月8日磁暴期间全球电离层扰动的发展变化;各扇区的响应特性;扰动的传播轨迹及速度等。获得以下结果:1.几大扇区的电离层扰动始于南北两极,美洲扇区除具这一特征外,其赤道地区在磁暴急始后不久,出现一个扰动中心,邻近区域的扰动受其控制。2.扰动由高纬向低纬发展,由扰动中心向外传播。3.扰动峰面几乎与地磁力线垂直,即扰动沿磁力线方向发展,其传播速度大约在150—600m/s范围。  相似文献   

4.
利用电离层层析成像技术(Computerized Ionospheric Tomography, CIT)处理115°E子午圈附近6个台站的GPS观测数据, 分析了2004年11月地磁暴期间中国中低纬电离层的响应情况. 结果表明, 电离层呈正相扰动, 且不同高度上的响应不同, 800 km以下电子密度有不同程度的增加, 且在峰值高度附近增幅最大, 800 km以上地磁暴的影响并不显著; 伴随地磁能量的注入, 赤道异常峰极向扩展; 随磁扰强度的降低, 电子密度也逐渐恢复至平静水平. 这些结果与以往的理论和观测结果一致, 初步估计扰动是由热层暴环流引起的, 并受到赤道异常峰移动的影响.   相似文献   

5.
利用全球分布的GPS原始观测数据提取的电离层总电子含量(TEC)分析了2004年11月6日至12日期间全球电离层暴的形态特点与发展过程.结果表明,11月8日磁暴主相期间电离层暴以大范围的强烈正暴为主,在11月10日的恢复相,Dst又一次降到最低值前后期间,电离层再次受到很强的扰动,大范围的正暴和负暴交替出现.这次磁暴期间夏季半球的负暴更加强烈,反映出负暴偏向于在夏季半球发生的季节变化特点.另外,磁暴期间,夜晚TEC值普遍比磁暴前的平静期要低,具体是什么机制导致还需要进一步收集数据和分析.   相似文献   

6.
The paper is focused on ionospheric response to occasional magnetic disturbances above selected ionospheric stations located at middle latitudes of the Northern and Southern Hemisphere under extremely low solar activity conditions of 2007–2009. We analyzed changes in the F2 layer critical frequency foF2 and the F2 layer peak height hmF2 against 27-days running mean obtained for different longitudinal sectors of both hemispheres for the initial, main and recovery phases of selected magnetic disturbances. Our analysis showed that the effects on the middle latitude ionosphere of weak-to-moderate CIR-related magnetic storms, which mostly occur around solar minimum period, could be comparable with the effects of strong magnetic storms. In general, both positive and negative deviations of foF2 and hmF2 have been observed independent on season and location. However positive effects on foF2 prevailed and were more significant. Observations of stormy ionosphere also showed large departures from the climatology within storm recovery phase, which are comparable with those usually observed during the storm main phase. The IRI STORM model gave no reliable corrections of foF2 for analyzed events.  相似文献   

7.
全球电离层对2000年4月6-7日磁暴事件的响应   总被引:1,自引:0,他引:1  
利用分布于全球的电离层台站的测高仪观测数据,对扰动期间,foF2值与其宁静期间参考值进行比较,研究了2000年4月6—7日磁暴期间全球不同区域电离层的响应形态,并通过对比磁扰期间NmF2的变化与由MSISR90经验模式估算的中性大气浓度比(no/nN2)的变化,探讨了本次事件期间的电离层暴扰动机制.结果表明,在磁暴主相和恢复相早期,出现了全球性的电离层F2层负相暴效应.最大负相暴效应出现在磁暴恢复相早期,即电离层暴恢复相开始时间滞后于磁暴恢复相开始时间.在磁暴恢复相后期,一些台站出现正相扰动.研究结果表明,本次事件期间的电离层暴主要是由磁暴活动而诱发的热层暴环流引起的.  相似文献   

8.
Ionospheric disturbances are known to have adverse effects on the satellite-based communication and navigation. One particular type of ionospheric effects, observed during major geomagnetic storms and threatening the integrity performance of both ground-based and space-based GNSS augmentation systems, is the sharp increase/decrease in the ionospheric delay that propagates in horizontal direction, thus called for convenience ‘moving ionospheric wall’. This paper presents preliminary results from researching such anomalous ionospheric delay gradients at European middle latitudes during the storm events of 29 October 2003 and 20 November 2003. For the purpose, 30-s GPS data from the Belgian permanent network was used for calculating and analysing the slant ionospheric delay and total electron content values. It has been found that, during these two particular storm events, substantial gradients did occur in Europe although they were not so pronounced as in the American sector.  相似文献   

9.
The International Reference Ionosphere IRI-2001 model contains geomagnetic activity dependence based on an empirical storm time ionospheric correction (STORM model). An extensive validation of the STORM model for the middle latitude region has been performed. In this paper the ability of the STORM model to predict foF2 values at high latitudes is analyzed. For this, ionosonde data obtained at Base Gral. San Martin (68.1°S, 293°E) are compared with those obtained by the IRI-2001 model with or without storm correction during four geomagnetic storms that occurred in 2000 (Rz12 = 117) and 2001 (Rz12 = 111). The results show that predicted values with the STORM model follow the behaviour of foF2 experimental data better than without the STORM model. The relative deviation between measured and predicted foF2 reaches values of up to 24% and 43% with and without the STORM model in IRI-2001, during the main phase of the storms. In order to explain increases of electron density that occurred prior to the storm onset and also decreases of electron density observed during the first part of the recovery of the storm, possible physical mechanisms are discussed.  相似文献   

10.
This paper presents results pertaining to the response of the mid-latitude ionosphere to strong geomagnetic storms that occurred from 31 March to 02 April 2001 and 07–09 September 2002. The results are based on (i) Global Positioning Systems (GPSs) derived total electron content (TEC) variations accompanying the storm, (ii) ionosonde measurements of the ionospheric electrodynamic response towards the storms and (iii) effect of storm induced travelling ionospheric disturbances (TIDs) on GPS derived TEC. Ionospheric data comprising of ionospheric TEC obtained from GPS measurements, ionograms, solar wind data obtained from Advanced Composition Explorer (ACE) and magnetic data from ground based magnetometers were used in this study. Storm induced features in vertical TEC (VTEC) have been obtained and compared with the mean VTEC of quiet days. The response of the mid-latitude ionosphere during the two storm periods examined may be characterised in terms of increased or decreased level of VTEC, wave-like structures in VTEC perturbation and sudden enhancement in hmF2 and h′F. The study reveals both positive and negative ionospheric storm effects on the ionosphere over South Africa during the two strong storm conditions. These ionospheric features have been mainly attributed to the travelling ionospheric disturbances (TIDs) as the driving mechanism for the irregularities causing the perturbations observed. TEC perturbations due to the irregularities encountered by the satellites were observed on satellites with pseudo random numbers (PRNs) 15, 17, 18 and 23 between 17:00 and 23:00 UT on 07 September 2002.  相似文献   

11.
中纬电离层暴时形态的理论模式研究   总被引:1,自引:0,他引:1  
结合观测结果对中纬电离层暴时形态进行理论模式研究.分析了两次电离层暴变事件中影响其基本形态的原子-分子含量比、上部输运通量和中性风等因素的行为,发现在这两次具有不同特点的事件中,中性风较为平稳,而原子-分子含量比和耦合输运通量的相对作用则各不相同.   相似文献   

12.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   

13.
From September 7 to 8, 2017, a G4-level strong geomagnetic storm occurred, which seriously impacted on the Earth’s ionosphere. In this work, the global ionospheric maps released by Chinese Academy of Sciences are used to investigate the ionospheric responses over China and its adjacent regions during the strong storm. The prominent TEC enhancements, which mainly associated with the neutral wind and eastward prompt penetration electric field, are observed at equatorial ionization anomaly crests during the main phase of the storm on 8 September 2017. Compared with those on 8 September, the TEC enhancements move to lower-latitude regions during the recovery phase on 9 September. A moderate storm occurred well before the start of the strong storm causes similar middle-latitude TEC enhancements on 7 September. However, the weak TEC depletion is observed at middle and low latitude on 9–10 September, which could be associated with the prevailing westward disturbance electric field or storm-time neural composition changes. In addition, the storm-time RMS and STD values of the ionospheric TEC grids over China increase significantly due to the major geomagnetic storm. The maximum of the RMS reaches 12.0 TECU, while the maximum of the STD reaches 8.3 TECU at ~04UT on 8 September.  相似文献   

14.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

15.
The F2-region reaction to geomagnetic storms usually called as an ionospheric storm is a rather complicated event. It consists of so called positive and negative phases, which have very complicated spatial and temporal behavior. The main morphological features of ionospheric storms and the main processes governing their behavior were understood at the end of the 1900s and described in a series of review papers. During the recent decade there were many publications dedicated to the problem of ionospheric storms. In this paper a concept of ionospheric storm morphology and physics formulated at the end of the 1990s is briefly summarized and the most interesting results obtained in the 2000s are described. It is shown that the main features of the studies of the previous decade were: the use of GPS TEC data for analyzing the ionospheric storm morphology, attraction of sophisticated theoretical models for studying the processes governing ionospheric behavior in disturbed conditions, and accent to analysis of ionospheric behavior during prominent events (very strong and great geomagnetic storms). Also a special attention was paid to the pre-storm enhancements in foF2 and TEC.  相似文献   

16.
本文利用东亚地区12个低纬电离层台站的测高仪观测数据,对1978年8月27日发生的一次曲型磁暴期间电离层峰值高度和密度的变化进行了分析。采用滑动平均区分开电离层中不同时间尺度的扰动,分析了影响中低纬度电离层暴的几种扰动形态特征,并对其物理机制进行了讨论。结果表明:伴随磁暴急始的磁层压缩,电离层中表现出峰值密度增加和峰值高度下降;磁暴主相期间热层大气暴环流及其所引起的中性大气成分变化控制着电离层的大  相似文献   

17.
By using the data of GNSS (Global Navigation Satellite System) observation from Crustal Movement Observation Network of China (CMONOC), ionospheric electron density (IED) distributions reconstructed by using computerized ionospheric tomography (CIT) technique are used to investigate the ionospheric storm effects over Wuhan region during 17 March and 22 June 2015 geomagnetic storm periods. F-region critical frequency (foF2) at Wuhan ionosonde station shows an obvious decrease during recovery phase of the St. Patrick’s Day geomagnetic storm. Moreover, tomographic results present that the decrease in electron density begins at 12:00 UT on 17 March during the storm main phase. Also, foF2 shows a long-lasting negative storm effect during the recovery phase of the 22 June 2015 geomagnetic storm. Electron density chromatography presents the evident decrease during the storm day in accordance with the ionosonde observation. These ionospheric negative storm effects are probably associated with changes of chemical composition, PPEF and DDEF from high latitudes.  相似文献   

18.
利用广州站组建的两台短间距GPS电离层闪烁监测仪的观测数据, 分别对GPS卫星信号强度用功率谱和短间距台链互相关性两种方法计算了3次闪烁事件电离层不规则体的漂移速度. 分析结果表明, 同一不规则体会引起两台站闪烁事件的同时发生, 两种方法测量不规则体漂移速度通常在50~160m/s之间, 平均大小均在120m/s左右, 且纬向漂移速度在闪烁初期起伏较明显, 速度随闪烁时间有下降的趋势, 夜间纬向漂移方向由西向东, 广州地区漂移速度特性符合低纬其他地区不规则体漂移速度特征, 两种计算方法合理有效.   相似文献   

19.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   

20.
PPP with low-cost, single-frequency receivers has been receiving increasing interest in recent years because of its large amount of possible users. One crucial issue in single-frequency PPP is the mitigation of ionospheric delays which cannot be removed by combining observations on different frequencies. For this purpose, several approaches have been developed, such as, the approach using ionospheric model corrections with proper weight, the GRAPHIC (Group and Phase Ionosphere Calibration) approach, and the method to model ionospheric delays over a station with a low polynomial or stochastic process. From our investigation on the stochastic characteristics of the ionospheric delay over a station, it cannot be precisely represented by either a deterministic model in the form of a low-order polynomial or a stochastic process for each satellite, because of its strong irregular spatial and temporal variations. Therefore, a novel approach is developed accordingly in which the deterministic representation is further refined by a stochastic process for each satellite with an empirical model for its power density. Furthermore, ionospheric delay corrections from a constructed model using GNSS data are also included as pseudo-observations for a better solution. A large data set collected from about 200 IGS stations over one month in 2010 is processed with the new approach and several commonly adopted approaches for validation. The results show its significant improvements in terms of positioning accuracy and convergence time with a negligible extra processing time, which is also demonstrated by data collected with a low-cost, handheld, single-frequency receiver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号