共查询到20条相似文献,搜索用时 15 毫秒
1.
Michiel Otten Claudia Flohrer Tim Springer John Dow 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This paper gives an overview of the DORIS related activities at the Navigation Support Office of the European Space Operations Centre. The DORIS activities were started in 2002 because of the launch of the Envisat satellite where ESOC is responsible for the validation of the Envisat Precise Orbits and a brief overview of the key Envisat activities at ESOC is given. Typical orbit comparison RMS values between the CNES POE (GDR-C) and the ESOC POD solution is 6.5, 18.8 and 23.1 mm in radial-, along- and cross-track direction. In the framework of the generation of the ITRF2008 ESOC participated in the reprocessing of all three space geodetic techniques; DORIS, SLR, and GPS. Here the main results of our DORIS reprocessing, in the framework of the International DORIS Service (IDS), are given. The WRMS of the weekly ESOC solution (esawd03) for the 2004–2009 period compared to the IDS-1 combined solution is of the order of 12 mm. Based on the long time series of homogeneously processed data a closer look is taken at the estimated solar radiation pressure parameters of the different satellites used in this DORIS analysis. The main aim being the stabilization of the Z-component of the geocentre estimates. We conclude that the ESOC participation to the IDS ITRF2008 contribution has been beneficial for both ESOC and the IDS. ESOC has profited significantly from the very open and direct communications and comparisons that took place within the IDS during the reprocessing campaign. 相似文献
2.
Detlef Angermann Manuela Seitz Hermann Drewes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
In its function as an ITRS Combination Centre, DGFI is in charge with the computation of an ITRF2008 solution. The computation methodology of DGFI is based on the combination of datum-free normal equations (weekly or session data sets, respectively) of station positions and Earth orientation parameters (EOP) from the geodetic space techniques DORIS, GPS, SLR and VLBI. In this paper we focus on the DORIS part within the ITRF2008 computations. We present results obtained from the analysis of the DORIS time series for station positions, network translation and scale parameters, as well as for the terrestrial pole coordinates. The submissions to ITRF2008 benefit from improved analysis strategies of the seven contributing IDS analysis centres and from a combination of the weekly solutions of station positions and polar motion. The results show an improvement by a factor of two compared to past DORIS data submitted to ITRF2005, which has been evaluated by investigating the repeatabilities of position time series. The DORIS position time series were analysed w.r.t. discontinuities and other non-linear effects such as seasonal variations. About 40 discontinuities have been identified which have been compared with the results of an earlier study. Within the inter-technique combination we focus on the DORIS contribution to the integration of the different space geodetic observations and on a comparison of the geodetic local ties with the space geodetic solutions. Results are given for the 41 co-location sites between DORIS and GPS. 相似文献
3.
Guilhem Moreaux Pascal Willis Frank G. Lemoine Nikita P. Zelensky Alexandre Couhert Hanane Ait Lakbir Pascale Ferrage 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):118-138
To support precise orbit determination of the altimetry missions, the International DORIS Service (IDS) regularly estimates the DPOD (DORIS terrestrial reference frame for Precise Orbit Determination) solution which includes mean positions and velocities of all the DORIS stations. This solution is aligned to the current realization of the International Terrestrial Reference Frame (ITRF) and so, can be seen as a DORIS extension of the ITRF. In 2016, moving to the IDS Combination Center, the DPOD construction scheme changed. The new DPOD solution is produced from a DORIS cumulative position and velocity solution. We present the new methodology used to compute DPOD2014 and its validation procedure. In order to present geophysical applications and interpretations of these results, we show two examples: (1) the Gorkha earthquake (M7.8 – April 2015) generates a 3-D mis-positioning of nearly 55?mm of the EVEB DORIS station at the Everest base camp 90?km from the epicenter. (2) Applying the results the DPOD2014 realization, we show that the most recent vertical velocity of Thule, Greenland is similar to that observed between 2006 and 2010, indicating further ongoing ice mass loss in the Thule region of northwest Greenland. 相似文献
4.
Jean-Jacques Valette Frank G. Lemoine Pascale Ferrage Philippe Yaya Zuheir Altamimi Pascal Willis Laurent Soudarin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
For the first time, the International DORIS Service (IDS) has produced a technique level combination based on the contributions of seven analysis centers (ACs), including the European Space Operations Center (ESOC), Geodetic Observatory Pecny (GOP), Geoscience Australia (GAU), the NASA Goddard Space Flight Center (GSFC), the Institut Géographique National (IGN), the Institute of Astronomy, Russian Academy of Sciences (INASAN, named as INA), and CNES/CLS (named as LCA). The ACs used five different software packages to process the DORIS data from 1992 to 2008, including NAPEOS (ESA), Bernese (GOP), GEODYN (GAU, GSC), GIPSY/OASIS (INA), and GINS (LCA). The data from seven DORIS satellites, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5, Envisat and Jason-1 were processed and all the analysis centers produced weekly SINEX files in either variance–covariance or normal equation format. The processing by the analysis centers used the latest GRACE-derived gravity models, forward modelling of atmospheric gravity, updates to the radiation pressure modelling to improve the DORIS geocenter solutions, denser parameterization of empirically determined drag coefficients to improve station and EOP solutions, especially near the solar maximum in 2001–2002, updated troposphere mapping functions, and an ITRF2005-derived station set for orbit determination, DPOD2005. The CATREF software was used to process the weekly AC solutions, and produce three iterations of an IDS global weekly combination. Between the development of the initial solution IDS-1, and the final solution, IDS-3, the ACs improved their analysis strategies and submitted updated solutions to eliminate troposphere-derived biases in the solution scale, to reduce drag-related degradations in station positioning, and to refine the estimation strategy to improve the combination geocenter solution. An analysis of the frequency content of the individual AC geocenter and scale solutions was used as the basis to define the scale and geocenter of the IDS-3 combination. The final IDS-3 combination has an internal position consistency (WRMS) that is 15 to 20 mm before 2002 and 8 to 10 mm after 2002, when 4 or 5 satellites contribute to the weekly solutions. The final IDS-3 combination includes solutions for 130 DORIS stations on 67 different sites of which 35 have occupations over 16 years (1993.0–2009.0). The EOPs from the IDS-3 combination were compared with the IERS 05 C04 time series and the RMS agreement was 0.24 mas and 0.35 mas for the X and Y components of polar motion. The comparison to ITRF2005 in station position shows an agreement of 6 to 8 mm RMS in horizontal and 10.3 mm in height. The RMS comparison to ITRF2005 in station velocity is at 1.8 mm/year on the East component, to 1.2 mm/year in North component and 1.6 mm/year in height. 相似文献
5.
Zuheir Altamimi Xavier Collilieux 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Doppler Orbitography Radiopositionning Integrated by Satellite (DORIS) is one of the four fundamental techniques contributing to the ITRF. The optimal coverage over the globe of the DORIS observing sites and sites co-located with GPS, allow a strong embedding of DORIS within the ITRF network. DORIS contributes to the access to ITRF through precise orbit determination of altimetric satellites with onboard DORIS receivers. The DORIS contribution to the ITRF2008 is enhanced by the fact that the solutions of seven analysis centers were included in the submitted combined time series of weekly station positions and daily polar motion. We evaluate the quality of the DORIS combined solution in terms of its agreement with the other techniques (VLBI, SLR, GPS) contributing to the ITRF2008 combination. We show in particular that the precisions of the current IDS products range between 1.5 to 2.6 mm for station positions (at the epochs of minimum variances); better than 1 mm/yr in velocities and between 170 and 260 micro-arc-seconds for polar motion, a significant improvement by a factor of three to five, compared to past data used in the ITRF2005 combination. This improvement is certainly due to improved analysis strategies employed by the seven IDS analysis centers that contributed to the combined weekly submitted solutions of station positions and polar motion. A spectral analysis of DORIS station height time series indicates that annual and semi-annual signals are dominant. However, TOPEX draconitic period of about 118 days is still detected in about 20% of the station position power spectra. DORIS height annual signals correlate well with GPS annual signal estimated at some co-located stations, which show that DORIS technique is able to detect loading signals. 相似文献
6.
Pascal Willis Hervé Fagard Pascale Ferrage Frank G. Lemoine Carey E. Noll Ron Noomen Michiel Otten John C. Ries Markus Rothacher Laurent Soudarin Gilles Tavernier Jean-Jacques Valette 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
DORIS is one of the four space-geodetic techniques participating in the Global Geodetic Observing System (GGOS), particularly to maintain and disseminate the Terrestrial Reference Frame as determined by International Earth rotation and Reference frame Service (IERS). A few years ago, under the umbrella of the International Association of Geodesy, a DORIS International Service (IDS) was created in order to foster international cooperation and to provide new scientific products. This paper addresses the organizational aspects of the IDS and presents some recent DORIS scientific results. It is for the first time that, in preparation of the ITRF2008, seven Analysis Centers (AC’s) contributed to derive long-term time series of DORIS stations positions. These solutions were then combined into a homogeneous time series IDS-2 for which a precision of less than 10 mm was obtained. Orbit comparisons between the various AC’s showed an excellent agreement in the radial component, both for the SPOT satellites (e.g. 0.5–2.1 cm RMS for SPOT-2) and Envisat (0.9–2.1 cm RMS), using different software packages, models, corrections and analysis strategies. There is now a wide international participation within IDS that should lead to future improvements in DORIS analysis strategies and DORIS-derived geodetic products. 相似文献
7.
R. Govind F.G. Lemoine J.J. Valette D. Chinn N. Zelensky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Geoscience Australia contributed a multi-satellite, multi-year weekly time series to the International DORIS Service combined submission for the construction of International Terrestrial Reference Frame 2008 (ITRF2008). This contributing solution was extended to a study of the capability of DORIS to dynamically estimate the variation in the geocentre location. Two solutions, comprising different constraint configurations of the tracking network, were undertaken. The respective DORIS satellite orbit solutions (SPOT-2, SPOT-4, SPOT-5 and Envisat) were verified and validated by comparison with those produced at the Goddard Space Flight Center (GSFC), DORIS Analysis Centre, for computational consistency and standards. In addition, in the case of Envisat, the trajectories from the GA determined SLR and DORIS orbits were compared. The results for weekly dynamic geocentre estimates from the two constraint configurations were benchmarked against the geometric geocentre estimates from the IDS-2 combined solution. This established that DORIS is capable of determining the dynamic geocentre variation by estimating the degree one spherical harmonic coefficients of the Earth’s gravity potential. It was established that constrained configurations produced similar results for the geocentre location and consequently similar annual amplitudes. For the minimally constrained configuration Greenbelt–Kitab, the mean of the uncertainties of the geocentre location were 2.3, 2.3 and 7.6 mm and RMS of the mean uncertainties were 1.9, 1.2 and 3.5 mm for the X, Y and Z components, respectively. For GA_IDS-2_Datum constrained configuration, the mean of the uncertainties of the geocentre location were 1.7, 1.7 and 6.2 mm and RMS of the mean uncertainties were 0.9, 0.7 and 2.9 mm for the X, Y and Z components, respectively. The mean of the differences of the two DORIS dynamic geocentre solutions with respect to the IDS-2 combination were 1.6, 4.0 and 5.1 mm with an RMS of the mean 21.2, 14.0 and 31.5 mm for the Greenbelt–Kitab configuration and 4.1, 3.9 and 4.3 mm with an RMS 8.1, 9.0 and 28.6 mm for the GA_IDS-2_Datum constraint configuration. The annual amplitudes for each component were estimated to be 5.3, 10.8 and 11.0 mm for the Greenbelt–Kitab configuration and 5.3, 9.3 and 9.4 mm for the GA_IDS-2_Datum constraint configuration. The two DORIS determined dynamic geocentre solutions were compared to the SLR determined dynamic solution (which was determined from the same process of the GA contribution to the ITRF2008 ILRS combination) gave mean differences of 3.3, −4.7 and 2.5 mm with an RMS of 20.7, 17.5 and 28.0 mm for the X, Y and Z components, respectively for the Greenbelt–Kitab configuration and 1.1, −5.4 and 4.4 mm with an RMS of 9.7, 13.3 and 24.9 mm for the GA_IDS-2_Datum configuration. The larger variability is reflected in the respective amplitudes. As a comparison, the annual amplitudes of the SLR determined dynamic geocentre are 0.9, 1.0 and 6.8 mm in the X, Y and Z components. The results from this study indicate that there is potential to achieve precise dynamically determined geocentre from DORIS. 相似文献
8.
P. Yaya C. Tourain 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Among the factors which may disrupt the DORIS measurements quality, the ground antennas environment is of high importance. For a set of 15 selected DORIS beacon, the differences between the effective and theoretical power received on-board the satellites (SPOT-5 and Envisat) have been analyzed in terms of spatial direction around the antenna. Such antenna maps have also been established regarding the Doppler residuals of the least-square precise orbit adjustment. Thanks to 360° views from the antennas and aerial views of the sites, the impact of the signal obstructions (trees, roofs, antennas …) on power attenuation and Doppler residuals is discussed. Depending on the nature of the obstructed object, the attenuation level can reach more than 5 dB, and the residual RMS of the orbit adjustment may be doubled from the nominal value, reaching 1 mm/s locally. The nature of the ground at the foot of the antennas has been correlated to DORIS signal quality at high elevation: reflections on flat surfaces (e.g. roofs) affect the signal more significantly than reflections on natural ground (e.g. soil). In particular, a modeling of the multipath phenomenon affecting Fairbanks site has been established and fits remarkably with the observations. Finally, an evaluation of the direct impact of obstructing objects on the orbit has also been performed. The example of a scaffolding at Kauai site displays a few millimeters error in the along-track position of the satellite. 相似文献
9.
P. Willis J.C. Ries N.P. Zelensky L. Soudarin H. Fagard E.C. Pavlis F.G. Lemoine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
For Precise Orbit Determination of altimetry missions, we have computed a data set of DORIS station coordinates defined for specific time intervals called DPOD2005. This terrestrial reference set is an extension of ITRF2005. However, it includes all new DORIS stations and is more reliable, as we disregard stations with large velocity formal errors as they could contaminate POD computations in the near future. About 1/4 of the station coordinates need to be defined as they do not appear in the original ITRF2005 realization. These results were verified with available DORIS and GPS results, as the integrity of DPOD2005 is almost as critical as its accuracy. Besides station coordinates and velocities, we also provide additional information such as periods for which DORIS data should be disregarded for specific DORIS stations, and epochs of coordinate and velocity discontinuities (related to either geophysical events, equipment problem or human intervention). The DPOD model was tested for orbit determination for TOPEX/Poseidon (T/P), Jason-1 and Jason-2. Test results show DPOD2005 offers improvement over the original ITRF2005, improvement that rapidly and significantly increases after 2005. Improvement is also significant for the early T/P cycles indicating improved station velocities in the DPOD2005 model and a more complete station set. Following 2005 the radial accuracy and centering of the ITRF2005-original orbits rapidly degrades due to station loss. 相似文献
10.
Marie-Line Gobinddass Pascal Willis Michel Menvielle Michel Diament 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
In preparation of ITRF2008, all geodetic technique services (VLBI, SLR, GPS and DORIS) are generating new solutions based on combination of individual analysis centers solutions. These data reprocessing are based on a selection of models, parameterization and estimation strategy unique to each analysis center and to each technique. While a good agreement can be found for models between groups, thanks to the existence of the IERS conventions, a great diversity still exist for parameter estimation, allowing possible future improvements in this direction. The goal of this study is to focus on the atmospheric drag estimation used to generate the new DORIS/IGN ignwd08 time series prepared for ITRF2008. We develop here a method to inter-compare different processing strategies. In a first step, by analyzing single-satellite solutions for a few weeks of data but for a large number of possible analysis strategies, we demonstrate that estimating drag coefficient more frequently (typically every 1–2 h instead of previously every 4–8 h) for the lowest DORIS satellites (SPOTs and Envisat) provides better geodetic results for station coordinates and polar motion. This new processing strategy also solved earlier problem found when processing DORIS data during intense geomagnetic events, such as geomagnetic storms. Differences between drag estimation strategies can mostly be found during these few specific periods of extreme geomagnetic activity (few days per year). In such a case, when drag coefficient is only estimated every 6 h or less often for single-satellite solution, a significant degradation in station coordinate accuracy can be observed (120 mm vs. 20 mm) and significant biases arose in polar motion estimation (5 mas vs. 0.3 mas). In a second step, we reprocessed a full year of DORIS data (2003) in a standard multi-satellite mode. We were able to provide statistics on a more reliable data set and to strengthen these conclusions. Our proposed DORIS analysis is easy to implement in all software packages and is now already used by several analysis centers of the International DORIS Service (IDS) when submitting reprocessed solutions for ITRF2008. 相似文献
11.
Ernst Schrama 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):235-247
In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10?s averaged Doppler tracking pass residuals is approximately 0.39?mm/s; and the average of the laser tracking pass residuals becomes 1.42?cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25?cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of ?0.15 to +0.15?mm/s. 相似文献
12.
13.
DORIS system: The new age 总被引:1,自引:0,他引:1
A. Auriol C. Tourain 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The boarding of the first DGXX DORIS instrument on Jason-2 mission gives us the opportunity to present the improvements that have been implemented on the DORIS system. The goal of this paper is to present information about the new capacities of the DORIS system and to give the current status of its components. An overview of the DORIS system, the International DORIS Service and the Jason-2 satellite mission are first presented. Then the new characteristics of the on-board instrument are detailed. The capacity to track up to seven ground beacons simultaneously dramatically increases the number of measurements performed: a factor of three increase over Jason-1 is observed at the altitude of 1330 km. It also increases the diversity of directions of observation and allows low elevation measurements from 0°. The new phase measurements capability allows now phase processing. The instability of the Jason-1 USOs (Ultra-Stable Oven-controlled quartz oscillator) while crossing the South Atlantic Anomaly has been solved by decreasing the sensitivity to radiation by a factor of 10. New features of the on-board software enhance the coastal and inland water altimetry and increase the robustness of the data. The new software also improves the real time orbit accuracy for operational altimetry. The improvements introduced concurrently on the ground segment have also significantly enhanced capability. The new RINEX exchange formats provide simultaneous phase and pseudo-range measurements. The maintenance of the DORIS Beacons Network and the work done by the DORIS Signal Integrity monitoring team lead to an increased availability of the Network from 75% to 90% and so to a more homogenous orbit coverage. 相似文献
14.
15.
Flavien Mercier Luca Cerri Jean-Paul Berthias 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The DORIS instrument on Jason-2 is the first of a new generation. The satellite receivers have now seven simultaneous measurement channels, with synchronous dual frequency phase and pseudo-range measurements. These measurements are now described in a similar manner as GPS measurements and an extension of the RINEX 3.0 format has been defined for DORIS. Data are available to users with a shorter latency. 相似文献
16.
Nikita P. Zelensky Frank G. Lemoine Brian D. Beckley Douglas S. Chinn Despina E. Pavlis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):45-73
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation. 相似文献
17.
Pascal Willis Claude Boucher Hervé Fagard Bruno Garayt Marie-Line Gobinddass 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
DORIS is one of the four geodetic space techniques participating to the Global Geodetic Observing System (GGOS). Since the early development of this system, the Institut Géographique National played a specific and active role. Within, the International DORIS Service (IDS), IGN is in a particular position. While it is responsible for the installation and the maintenance of the DORIS ground tracking stations, it also handles one of the two IDS data center delivering DORIS data and products and has been an IDS Analysis Center for years, providing all possible IDS products, in particular the latest ignwd08 time series in preparation of ITRF2008. This paper explains the different aspects of the IGN contribution to IDS from an historical point of view, presents current activities and scientific results and provides a perspective for future activities. Recent DORIS results show a 10 mm precision or better when more than four DORIS satellites are available. Comparisons between recent DORIS solutions (ign07d02 and ign09d02) and past ITRF realizations show that errors are shared between the DORIS and the ITRF realizations. Some problems related to DORIS data processing are also discussed and possible ways to solve them in the future are discussed. In particular, we can now reject the tropospheric origin of the problem detected in the Envisat data after the software upload of October 12, 2004. A few applications in geodesy (terrestrial reference frame, Earth’s polar motion) and geophysics are also discussed as a natural extension of these service-type activities. 相似文献
18.
等离子体层是日地环境重要的组成部分.本文利用COSMIC掩星精密定轨数据经处理后得到的podTec文件获取等离子体层电子含量(PEC)对等离子体层进行研究.将podTec数据进行处理后获得的PEC(pod-PEC)和IRI-Plas经验模型提供的PEC (IRI-PEC)进行对比,发现pod-PEC与IRI-PEC符合得较好.在低(0°—20°)、中(20°—50°)、高(50°—90°)修正地磁纬度带下,分析了COSMIC在太阳活动极大年(2014年)3,6,9和12月的pod-PEC,得到如下结论:PEC随着纬度升高而逐渐减少,且3,9月PEC在中低纬关于磁赤道的南北对称性较好,6月北半球各纬度带的PEC明显高于南半球同一纬度带的值,而12月情况则完全相反,南半球中纬的PEC甚至会等于北半球低纬的PEC值;PEC在白天高而晚上低,高纬地区的PEC昼夜变化不明显;PEC具有明显的季节性.对于北半球,一年中PEC最大值出现在春季,冬秋季次之,夏季最低,具有明显的年度异常现象. 相似文献
19.
基于单频星载GPS数据的低轨卫星精密定轨 总被引:1,自引:0,他引:1
为满足搭载单频GPS接收机低轨卫星的精密定轨需求以及深化单频定轨研究,文中解决了单频星载GPS数据的周跳探测问题,并利用“海洋二号”(HY-2A)卫星及“资源三号”(ZY-3)卫星的单频星载GPS实测数据采用两种方法确定了二者的简化动力学轨道,并通过观测值残差分析、与双频精密轨道比较、激光测卫数据检核等方法对所得轨道精度进行评定。结果表明,在不考虑电离层延迟影响的情况下,HY-2A卫星定轨精度为2~3dm,ZY-3卫星为1m左右;而采用半和改正组合消除电离层延迟一阶项影响后,二者定轨精度均显著提高,HY-2A卫星三维精度提高至1dm左右,ZY-3卫星提高至1~2dm。文章的研究成果表明,搭载单频GPS接收机的低轨卫星也可获得厘米级的定轨精度。 相似文献
20.
F.G. Lemoine N.P. Zelensky D.S. Chinn D.E. Pavlis D.D. Rowlands B.D. Beckley S.B. Luthcke P. Willis M. Ziebart A. Sibthorpe J.P. Boy V. Luceri 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The TOPEX/Poseidon, Jason-1 and Jason-2 set of altimeter data now provide a time series of synoptic observations of the ocean that span nearly 17 years from the launch of TOPEX in 1992. The analysis of the altimeter data including the use of altimetry to monitor the global change in mean sea level requires a stable, accurate, and consistent orbit reference over the entire time span. In this paper, we describe the recomputation of a time series of orbits that rely on a consistent set of reference frames and geophysical models. The recomputed orbits adhere to the IERS 2003 standards for ocean and earth tides, use updates to the ITRF2005 reference frame for both the SLR and DORIS stations, apply GRACE-derived models for modeling of the static and time-variable gravity, implement the University College London (UCL) radiation pressure model for Jason-1, use improved troposphere modeling for the DORIS data, and apply the GOT4.7 ocean tide model for both dynamical ocean tide modeling and for ocean loading. The new TOPEX orbits have a mean SLR fit of 1.79 cm compared to 2.21 cm for the MGDR-B orbits. These new TOPEX orbits agree radially with independent SLR/crossover orbits at 0.70 cm RMS, and the orbit accuracy is estimated at 1.5–2.0 cm RMS over the entire TOPEX time series. The recomputed Jason-1 orbits agree radially with the Jason-1 GDR-C orbits at 1.08 cm RMS. The GSFC SLR/DORIS dynamic and reduced-dynamic orbits for Jason-2 agree radially with independent orbits from the CNES and JPL at 0.70–1.06 cm RMS. Applying these new orbits, and using the latest altimeter corrections for TOPEX, Jason-1, and Jason-2 from September 1992 to May 2009, we find a global rate in mean sea level of 3.0 ± 0.4 mm/yr. 相似文献