共查询到20条相似文献,搜索用时 0 毫秒
1.
Geoffrey Andima Emirant B. Amabayo Edward Jurua Pierre J. Cilliers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):264-273
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique. 相似文献
2.
K. Patel Ashutosh K. Singh P. Subrahmanyam A.K. Singh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The presence and movement of plasma density fluctuations in the F-region of the ionosphere are studied by monitoring phase and amplitude of radio waves propagating through the region. In this paper, we have used weak scattering theory and assumed the plasma density fluctuations to behave like phase changing diffraction screen. Appropriate relations for scintillation index S4, and phase variance δ? are derived and computed for different parameters of the plasma density irregularities of the ionosphere. SROSS-C2 satellite in situ measurements of plasma density fluctuations, which provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves, were used first time to develop a scintillation model for low latitude. It is observed that the scintillation index S4 and phase variance δ? depends on the strength of the plasma turbulence. Finally, the results obtained from modeling are compared and discussed with the available recent results. 相似文献
3.
D. Blagoveshchensky A. Kalishin J. MacDougall 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(9):1008-1012
Propagation mechanisms of lateral (non-great-circle) signals on a high-latitude HF radio path during magnetospheric substorms that occurred in the day-time have been considered. The path is equipped with oblique ionospheric sounding (OIS) from Murmansk to St. Petersburg. The OIS method gives the possibility to determine propagation modes, MOF (maximum observed frequency) values, signal delays, etc. Data of the CUTLASS radar, the IMAGE magnetometer system, the Finnish riometer chain, and the Tromso ionosonde were also used for the analysis. The main results are the following: (1) the lateral signal propagation takes place, as a rule, if the path midpoint is located near the irregularity region that moves sharply from high to low latitudes. The lateral signal propagation appearing during day-time is a new effect. (2) Formation of dense field-aligned irregularities during a substorm leads to decreasing F2MOF values on radio paths. These results can be useful for problems of radiolocation, HF communications and navigation. 相似文献
4.
V.K.D. Srinivasu N. Dashora D.S.V.V.D. Prasad K. Niranjan S. Gopi Krishna 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1761-1775
This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions. 相似文献
5.
Yuhua Zou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities. 相似文献
6.
Guojun Wang Jiankui Shi Weihua Bai Ivan Galkin Zeng Wang Yueqian Sun 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3119-3130
Global observations of S4 amplitude scintillation index by the GPS Occultation Sounder (GNOS) on FengYun-3 C (FY3C) satellite reveal global dynamic patterns of a strong pre-midnight scintillations in F-region of the ionosphere during the St. Patrick’s Day geomagnetic super storm of 17–19 March 2015. The observed strong scintillations mainly occurred in the low latitudes, caused by equatorial plasma bubbles. During the main storm phase (March 17), the scintillations were first triggered in the New Zealand sector near 160°E longitudes, extending beyond 40°S dip latitude. They were also enhanced in the Indian sector, but significantly suppressed in East Asia near 120°E longitude and in Africa around 30°E longitude. During the initial recovery phase (March 18–19), the global scintillations were seldom observed in GNOS data. During the later recovery phase (after March 19), the scintillations recovered to the pre-storm level in Indian, African, and American sectors, but not in East Asian and any of Pacific sectors. These results closely correlate with observations of the density depletion structures by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite, and ground-based instruments. Such consistency indicates reliability of our scintillation sensing approach even in a case-by-case comparison study. The prompt penetration electric field and disturbance dynamo electric field are suggested as the main factors that control the enhancement and inhibition of the scintillations during the storm, respectively. 相似文献
7.
N.Y. Zaalov H. Rothkaehl A.J. Stocker E.M. Warrington 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The morphology of the auroral, sub-auroral and mid-latitude trough region of the ionosphere is strongly dependent on the interplanetary magnetic field and the level of geomagnetic activity. Changes in the morphology impact on the characteristics of HF signals propagating through these regions of the ionosphere. In order to develop a better understanding of these effects, a number of experiments have recently been undertaken in which the time of flight and direction of arrival of HF signals have been measured over several paths aligned along the mid-latitude trough. In addition, observations made by the DEMETER satellite of the mid-latitude trough electron density structure, dynamics and wave activity were used in order to investigate the effect of the fine structure of the ionosphere on HF signals. For two types of relatively common night time HF time of flight and azimuth of arrival behaviour (referred to here and elsewhere as ‘Type 1’ and ‘Type 2’ propagation), the signal behaviour is consistent with scatter from irregularities in the auroral region in the one case, and from irregularities present on the floor of the trough in the other. 相似文献
8.
A study of long-term climatology of ionospheric irregularities by using GPS phase fluctuations at the Brazilian longitudes 总被引:1,自引:0,他引:1
F.D. Chu C.C. Lee W.S. Chen J.Y. Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):645-649
We have examined the ionospheric plasma irregularities that were recorded by using three ground-based receivers of the global positioning system (GPS) located at Brazilian longitudes during the period of a complete solar cycle, 1995–2005. The statistic results show that ionospheric irregularities are very easy to occur in December solstice months but rare to occur in June solstice months. Besides, the occurrence rates of irregularities in both December and June solstice months are little dependent on solar activity. However, in equinoctial months, the development of irregularities is obviously dependent on solar activity. There is a new finding in this study that if strong irregularities are distinguished from moderate ones, their occurrence rates would increase with solar activity during the December solstice months. 相似文献
9.
重点报道了一种TEC伪距观测量的夜间抖动异常现象,分析了这种现象的观测特征,指出了夜间GPS伪距观测量的异常抖动,特别足日落后时段GPS伪距观测量的散开十分严重的现象不是个别的偶然现象.在考察了周围环境之后初步排除了这种现象是由周围地物引起的可能性,而进一步与电离层不均匀体(spread-F)的特征,特别是它发生率最大的地方时进行比较,认为这是一种电离层效应,由大尺度的电离层不规则结构造成的散射很可能是这种夜间散开的主要原因.木文仪就单站GPS观测资料认证了这种夜间强烈抖动的存在,分析了北京上空电离层中发生的不均匀体或各种扰动对GPS信号的可能影响及其观测特征,指出了夜间GPS伪距观测量的异常抖动,特别是日落后时段GPS伪距观测量的散开十分严重的现象,可以用于电离层不规则结构的研究.由于GPS没备比较简便、数据量大、精度高、适用于各种环境等特点,我们发展的单站GPS数据分析方法可能会对研究电离层TEC夜问涨落异常增加现象,包括地域、时间上的统计特性比较有利. 相似文献
10.
基于GPS信号的电离层S4指数计算方法研究 总被引:1,自引:2,他引:1
电波穿越电离层时,由于受到电离层不均匀结构的影响,电波的幅度、相位、时延等有时会发生快速抖动,这就是所谓的电磁波电离层闪烁现象.电离层闪烁会影响卫星通信系统的质量和导航系统的精度.本文分析了GPS信号研究电离层闪烁的基本原理,讨论了电离层闪烁监测中S4指数的计算方法及其修正方法.通过数据模拟,评估了原始S4指数计算方法及其修正方法的性能特点.针对原始S4指数计算方法及修正方法的不足,提出了一种新的修正方法,并采用实测GPS数据对上述方法进行了检验.结果表明,上述方法是有效的和可靠的. 相似文献
11.
电离层不规则结构的多普勒谱特性 总被引:3,自引:0,他引:3
利用武汉电离层观象台连续5年的高频多普勒记录,研究电离层中不规则结构反射回波的各种频谱特性及其变化。通常,扩展F回波总是引起扩散的多普勒诺;而Es回波的多普勒图白天一般呈平直光滑谱,晚上变得扩散,其多普勒展宽常比未扩散时大2-3倍,达1Hz以上。多普勒图上有时会出现斜描迹多普勒谱,这种谱结构反映了Es或扩展F中电子云团的漂移运动。 相似文献
12.
13.
Patrick Mungufeni Yong Ha Kim Nicholas Ssessenga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(7):2207-2218
This study analyzed the occurrence of ionospheric irregularities over South Korea and Japan (mid-latitudes) during the years 2010–2015. The irregularities were quantified using the rate of change of total electron content (TEC) index (ROTI), which detects irregularities with scale sizes in the range of 400 m–2.5 km. The ROTI threshold for an ionospheric irregularity to have occurred was set as 0.1 TECU/min. Results showed that ionospheric irregularities mostly occur during night-time and around local noon-time in the seasons of spring and summer. In addition, the percentage of ionospheric irregularities had a high positive correlation with solar flux (F10.7) (r > 0.72). For the first time, we showed good correspondence between ionospheric irregularities measured by the ROTI index and sporadic E (Es). The median ROTI associated with ionospheric irregularities over a South Korea station (DAEJ) and a Japan station (KGNI) were 0.131 and 0.125 TECU/min, respectively. However, in severe cases of ionospheric irregularities, the ROTI values over DAEJ (KGNI) can reach 0.246 (0.217) and 0.314 (0.339) TECU/min during day and night, respectively. These critical ROTI values can be important in interpreting and monitoring ionospheric irregularity occurrence over South Korea and Japan. 相似文献
14.
15.
海南地区电离层闪烁监测及初步统计分析 总被引:6,自引:6,他引:6
为开展赤道区的电离层闪烁形态特性及相关物理过程的研究,空间中心海南台站建立了一套GPS电离层闪烁监测系统.该系统是利用Plessey GPS Builder-2系统开发的,对软件的源码进行了修改,使其能以高采样率(50/s)同时并行记录11个通道GPS信号强度数据.对2003年7-12月间L-波段电离层闪烁事件的初步统计分析结果表明,电离层闪烁主要发生在日落后到午夜附近,其中9-11月较7-8月闪烁发生和结束的时间明显提前;电离层闪烁发生的频率和强度在9-11月较其他月份明显增强,其中10月达到最大;电离层闪烁的逐日变化具有很强的随机性,闪烁的发生在秋分附近9月底到10月中旬的磁静日期间达到最大;太阳和地磁活动的增强通常会抑制电离层闪烁的发生,这种情形在秋分附近尤为明显. 相似文献
16.
V.P. Uryadov F.I. Vybornov A.A. Kolchev G.G. Vertogradov M.S. Sklyarevsky I.A. Egoshin V.V. Shumaev A.G. Chernov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1837-1849
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ~50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (~100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero – Yoshkar-Ola and Cyprus – Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus – Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval. 相似文献
17.
海南地区电离层不规则体纬向漂移速度的观测和研究 总被引:1,自引:2,他引:1
根据中国海南富克(19.3°N,109.1°E)三点GPS观测系统2007年3月至11月的观测数据,利用互相关方法分析了三站闪烁信号的时间延迟,得出了不规则体纬向漂移的基本特征.在中国海南地区,闪烁主要发生在春秋季节,夜间不规则体的纬向漂移速度以东向为主,大小在50~150 m/s之间;平均东向漂移速度随时间呈下降趋势.另外,在闪烁刚发生时,不规则体纬向速度起伏较大,这可能与不规则体的随机起伏以及等离子体泡产生时垂直速度较大有关.中国海南地区不规则体纬向漂移速度的这些基本特征与低纬其他地区的测量结果较为一致. 相似文献
18.
Reza Ghoddousi-Fard Paul Prikryl François Lahaye 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Scintillated GPS phase observations are traditionally characterized by the phase scintillation index, derived from specialized GPS receivers usually tracking at 50 Hz. Geodetic quality GPS receivers, on the other hand, are normally tracking at frequencies up to 1 Hz. However, availability of continuously operating geodetic receivers both in time and geographical location are superior to scintillation receiver’s coverage in many parts of the world. This motivates scintillation studies using regional and global geodetic GPS networks. Previous studies have shown the usefulness of GPS estimated total electron content variations for detecting ionospheric irregularities. In this paper, collocated geodetic and scintillation receivers are employed to compare proxy indices derived from geodetic receivers with the phase scintillation index during quiet and moderately disturbed ionospheric conditions. Sensitivity of the phase scintillation indices at high latitude stations to geomagnetic activity is discussed. Global mapping of ionospheric disturbances using proxy indices from real-time 1 Hz GPS stations are also presented. 相似文献
19.
P.O. Amaechi E.O. Oyeyemi A.O. Akala 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(8):2074-2090
The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (?229?nT), 22nd June 2015 (?204?nT), 7th October 2015 (?124?nT), and 20th December 2015 (?170?nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth’s magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities. 相似文献
20.
R. Tiwari H.J. Strangeways S. Tiwari A. Ahmed 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The occurrence of ionospheric irregularities at high latitudes, with dimensions of several kms down to decameter scale size shows strong correlation with geomagnetic disturbance, season and solar activity. Transionospheric radio waves propagating through these irregularities experience rapid random fluctuations in phase and/or amplitude of the signal at the receiver, termed scintillation, which can degrade GNSS services. Thus, investigation and prediction of this scintillation effect is very important. To investigate such scintillation effects, a GISTM (GPS Ionospheric Scintillation and TEC Monitoring) NovAtel dual frequency (L1/L2) GPS receiver has been installed at Trondheim, Norway (63.41° N, 10.4° E), capable of collecting scintillation indices at a 1 min rate as well as the raw data (phase and intensity) of the satellite signals at a 50 Hz sampling rate and TEC (Total Electron Content) at a 1 Hz rate. Many researchers have reported that both phase and amplitude scintillation is closely associated with TEC fluctuations or associated with a significant developing enhancement or depletion in the TEC. In this study, a novel analogous phase index is developed which provides samples at a 1 min rate. Generally the scintillation indices can help in estimating the irregularity scintillation effect at a one minute rate, but such procedures are time consuming if DFTs of the phase and/or amplitude at a 50 Hz data are required. In this study, instead, this analogous phase index is estimated from 1 Hz rate TEC values obtained from the raw signals and is then compared for weak, moderate and strong scintillation at Trondheim for one year of data collected from the installed GPS receiver. The spectral index of the irregularities (that is the inverse power law of their spatial spectrum) is determined from the resultant phase scintillation psd. The correlations of the scintillation indices and spectral indices with the analogous phase index have been investigated under different geomagnetic conditions (represented by the Kp index) and an approximate linear correlation of phase scintillation with the analogous phase index was found. Then a principal advantage of this index is that it achieves this correlation without requiring a high sampling data rate and the need for DFTs. Thus, the index seems a good candidate for developing a simple means of ionospheric scintillation prediction which could also be utilized in the development of alerts using regional mappings. 相似文献