首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Spectral Airglow Temperature Imager (SATI) instrument registers airglow coming from an annular mesopause segment. The temperatures of various points of this segment are retrieved by sectors of the registered images containing spectral information. A stage of SATI spectrogram processing connected with deriving spectral information from images and the determination of the rotational temperature of oxygen molecules emitting at the altitude of the mesopause is considered.  相似文献   

2.
A sodium lidar, capable of measuring temperature in the 80–100 km region, has been in operation at São José dos Campos (23° S, 46 W) since March 2007. Good quality data have been obtained for late autumn, winter and spring, but weather conditions make it extremely difficult to make measurements from mid-November to mid- February. We find the temperature structure to be strongly modulated by tides and gravity waves, but average profiles typically show a primary mesopause height close to 100 km with temperatures around 180 K, and a tendency for a secondary minimum of about 185 K to occur close to 90 km. Vertical temperature gradients greater than 50 K/km are sometimes seen even on profiles averaged over several hours. The strongest gradients are always positive and are frequently associated with strong gradients in sodium concentration. On the other hand, we frequently see rapid changes in the temperature profile, suggesting that models and non-local temperature measurements, as made by satellite radiometers, for example, are of little use in applications such as the analysis of gravity wave propagation seen in airglow images.  相似文献   

3.
In this paper, we present the spatial variations of O(1D) airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite. With a CCD camera and a 630 nm filter, ISUAL can measure global atmospheric emissions lying between the heights of 80 and 300 km. In days of 3–6 September 2008 and 25–27 February 2009, ISUAL has measured the emissions of O(1D) airglow with results showing strong longitudinal peak-3 and peak-4 structures. The Lomb-Scargle analyses for these two cases show periods of longitudes of 120° and 90° supporting the DE2 and DE3 non-migrating tides. The 630 nm emissions are enhanced in equatorial regions and are lying along the equator. Over Africa its intensity can sometimes increase up to 80% relative to other longitudes. The perturbation is so strong that non-migrating tides are erased. A case of bimodal distribution with strong emissions at latitudes in equator and mid-latitude in geographic coordinates was observed.  相似文献   

4.
We have used the technique suggested by Hocking [Hocking, W. A new approach to momentum flux determinations using SKiYMET meteor radars. Ann. Geophys. 23, 2005.] to derive short period wind variances in the 80–100 km region from meteor radar data. We find that these fluctuating winds, assumed to correspond to gravity waves and turbulence, are closely correlated with the vertical shear of the horizontal tidal winds. This close correlation suggests that in situ wind shear may be a major source of gravity waves and turbulence in the MLT. If this is the case, gravity waves generated in the troposphere and propagating up to the MLT region, generally assumed to constitute an important influence on the climatology of the region, may be a less important source of energy and momentum in the 80–100 km region than has been hitherto believed.  相似文献   

5.
The Spectral Airglow Temperature Imager is an instrument for ground-based spectroscopic measurements of the night-glow atmosphere emissions. This instrument was developed specially for gravity wave investigation. The measured airglow spectra are matched to synthetic spectra calculated in advance for determination of the temperature in the mesopause region where the radiation maximum of some О2 emissions is situated. The synthetic spectra are transformed into a format which corresponds to the measured spectra in order to be matched. This transformation is based on the known values of the refractive index and the central wavelength of the interference filter used. A substantial part of the processing algorithms of the SATI images is connected with determination of these two filter parameters. The results of the original and newly-proposed algorithms for filter parameter calculation and their importance for the final results for temperature determination on the basis of the О2 (864–868 nm) emission measurements are presented.  相似文献   

6.
We present rotational temperature measurements of the mesospheric OH emission layer using a meridional imaging spectrograph at Millstone Hill (42.6°N, 72.5°W). The system is equipped with a state-of-the-art bare-CCD detector and can yield simultaneous quasi-meridional images of the mesospheric OH and O2 intensity and temperature fields at 87 and 94 km altitude during the course of each night. A cross-validation study of the rotational OH temperature measurements obtained on 61 nights during the autumnal months of 2005–2007 was undertaken with near-simultaneous kinetic temperature measurements made by the SABER instrument aboard the NASA TIMED satellite during overpasses of Millstone Hill. Excellent agreement was obtained between the two datasets with the small differences being attributable to differences in the spatial and temporal averaging inherent between the two datasets.  相似文献   

7.
Using the physics based model SUPIM and FORMOSAT-3/COSMIC electron density data measured at the long deep solar minimum (2008–2010) we investigate the longitude variations of the north–south asymmetry of the ionosphere at low latitudes (±30° magnetic). The data at around diurnal maximum (12:30–13:30 LT) for magnetically quiet (Ap ? 15) equinoctial conditions (March–April and September–October) are presented for three longitude sectors (a) 60°E–120°E, (b) 60°W–120°W and (c) 15°W–75°W. The sectors (a) and (b) have large displacements of the geomagnetic equator from geographic equator but in opposite hemispheres with small magnetic declination angles; and sector (c) has large declination angle with small displacement of the equators; vertical E × B drift velocities also have differences in the three longitude sectors. SUPIM investigates the importance of the displacement of the equators, magnetic declination angle, and E × B drift on the north–south asymmetry. The data and model qualitatively agree; and indicate that depending on longitudes both the displacement of the equators and declination angle are important in producing the north–south asymmetry though the displacement of the equators seems most effective. This seems to be because it is the displacement of the equators more than the declination angle that produces large north–south difference in the effective magnetic meridional neutral wind velocity, which is the main cause of the ionospheric asymmetry. For the strong control of the neutral wind, east–west electric field has only a small effect on the longitude variation of the ionospheric asymmetry. Though the study is for the long deep solar minimum the conclusions seem valid for all levels of solar activity since the displacement of the equators and declination angle are independent of solar activity.  相似文献   

8.
Airglow intensities and rotational temperatures of the OH(6-2) and O2b(0-1) bands acquired at El Leoncito (32°S, 69°W) provide good annual coverage in 1998–2002, 2006, and 2007, with between 192 and 311 nights of observation per year. These data can therefore be used to derive the seasonal variations during each of these seven years, in airglow brightness and temperatures at altitudes of 87 and 95 km. From 1998 to 2001, seasonal variations are similar enough so that they can be well represented by a mean climatology, for each parameter. On the other hand, these climatologies do not agree with what is usually observed at other sites, maybe due to the particular orographic conditions at El Leoncito. With respect to the last three fully documented years (2002, 2006, and 2007), the similarity from year to year deteriorates, and there are greater differences in the seasonal behaviour, more or less in all the parameters. The differences include, e.g., maxima occurring earlier or later than “normal”, by one or two months. All this may suggest the build-up of a new regime of intraseasonal variability, with a possible relationship to corresponding changes in wave activity.  相似文献   

9.
Water vapour measurements during the second mission of the CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument are presented in the altitude regime 8–20 km. Mixing ratios are shown on isentropic surfaces (300–500 K) as global zonal means and as averages in 60° longitude sectors. Transports are indicated to occur preferentially on isentropic surfaces in the northern hemisphere, but not in the tropics and in the south. The hygropause is found shifted away from the equator towards the winter hemisphere. The amount of shift is longitude dependent and can be as great as 20–30°. The water content of the hygropause area shows considerable zonal asymmetries.  相似文献   

10.
The present paper is focused on the global spatial (altitude and latitude) structure, seasonal and interannual variability of the most stable in amplitude and phase eastward propagating diurnal and semidiurnal tides with zonal wavenumbers 2 and 3 derived from the SABER/TIMED temperatures for full 6 years (January 2002–December 2007). The tidal results are obtained by an analysis method where the tides (migrating and nonmigrating) and the planetary waves (zonally travelling, zonally symmetric and stationary) are simultaneously extracted from the satellite data. It has been found that the structures of the eastward propagating diurnal tides with zonal wavenumbers 3 and 2 change from antisymmetric with respect to the equator below ∼85 km height, to more symmetric above ∼95 km. The seasonal behavior of the DE3 is dominated by annual variation with maximum in August–September reaching average (2002–2007) amplitude of ∼15 K, while that of the DE2 by semiannual variation with solstice maxima and with average amplitude of ∼8 K. These tides revealed some interannual variability with a period of quasi-2 years. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 2 in the southern hemisphere (SH) is dominated by annual variation with maximum in the austral summer (November–January) while that in the northern hemisphere (NH) by semiannual variation with equinoctial maxima. The SE2 maximizes near 115 km height and at latitude of ∼30° reaching an average amplitude of ∼6 K. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 3 in both hemispheres indicates a main maximum during June solstice and a secondary one during December solstice. The tide maximizes near 110–115 km height and at a latitude of ∼30° reaching an average amplitude of ∼4.8 K in the SH and ∼4 K in the NH. The tidal structures of the two eastward propagating semidiurnal tides are predominantly antisymmetric about the equator.  相似文献   

11.
The radiosonde data available from British Atmospheric Data Centre (BADC) for the latitudinal occupancy of 58° north through 45° south were analyzed to observe the variation of temperature and water vapor density. These two climatological parameters are largely assumed to be the influencing factors in determining the millimeter wave window frequencies over the chosen range of latitudes in between the two successive maxima occurring at 60 and 120 GHz. It is observed that between temperature and water vapor density, the later one is influencing mostly in determining the window frequency. It is also observed that the minima is occurring at 75 GHz through 94 GHz over the globe during the month January–February and 73 GHz through 85 GHz during the month July–August, depending on the latitudinal occupancy. It is observed that the large abundance of water vapor is mainly held responsible for shifting of minima towards the low value of frequencies. Hence, it is becoming most important to look at the climatological parameters in determining the window frequency at the place of choice.  相似文献   

12.
In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of −216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24–25 August 2005, the h′F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24–25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (∼12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.  相似文献   

13.
Lower-mesospheric inversion layers (MILs) were studied using the temperature profiles observed by TIMED/SABER over Cariri (7.5°S, 36.5°W), Brazil, in 2005. A total 175 MILs were identified with the maximum occurrence in April and October and the minimum in January and July. The lower MIL is located in a height region from 70 to 90 km, with the peak at around 83 ± 4 km with the temperature of 205 ± 5 K, and the thickness of 4–10 km. The results show large amplitudes of MILs during equinoxes and minimum in solstices, with a clear semiannual variation. A general feature of lower MIL in monthly mean profile was observed twice a year, one from February to May, and the other from August to October with a downward shift of the top level. These results suggest that formation and long persistence of MIL is an important factor to investigate propagation of atmospheric gravity waves in the mesosphere-lower thermosphere (MLT) region.  相似文献   

14.
The paper reports the nightglow observations of hydroxyl (8–3), (7–2) and (6–2) Meinel band carried out at a low latitude station Kolhapur (16.8°N, 74.2°E, dip latitude 10.6°N), India during November 2002 to May 2005 with the objective of investigating mesopause dynamics based on derived OH rotational temperature. Overall, 132 nights of quality data were collected using filter-tilting photometer and an all-sky scanning photometer. The mean mesopause temperature observed at Kolhapur is 195 ± 11, 196 ± 9 and 195 ± 7 K from OH (8–3), (7–2) and (6–2) band emissions, respectively, using transition probabilities given by Langhoff et al. [Langhoff, S.R., Werner, H.J., Rosmus, P. Theoretical transition probabilities for the OH Meinel system. Journal of Molecular Spectroscopy 118, 507–529, 1986]. Small wave-like variations (periodicities ∼ few hours) existing over long period variations in derived temperatures are also present. A steady decrease of emission intensities from evening to dawn hours has been observed in approximately 59% of nights. No significant change of nightly mean temperatures has been noted. Furthermore, about 62% of observed nightly mean temperatures lie within one error bar of MSISE-90 model predictions.  相似文献   

15.
A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09′08.2″ S, 75°33′49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33′17.6″ S, 71°39′59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5–88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10−4 and 5.4 × 10−4 J/m3, which is 2–3 times smaller than the values derived from partial radio wave at 52°N latitude.  相似文献   

16.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   

17.
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA’s Thermosphere–Ionosphere–Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 μm limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.  相似文献   

18.
The effects of a major stratospheric sudden warming (SSW) at extratropical latitudes have been investigated with wind and temperature observations over a Brazilian station, Cachoeira Paulista (22.7°S, 45°W) during September–October 2002. In response to the warming at polar latitudes a corresponding cooling at tropical and extratropical latitudes is prominent in the stratosphere. A conspicuous signature of latitudinal propagation of a planetary wave of zonal wavenumbers 1 and 2 from polar to low latitude has been observed during the warming period. The polar vortex which split into two parts of different size is found to travel considerably low latitude. Significant air mass mixing between low and high latitudes is caused by planetary wave breaking. The meridional wind exhibits oscillations of period 2–4 days during the warming period in the stratosphere. No wave feature is evident in the mesosphere during the warming period, although a 12–14 day periodicity is observed after 2 weeks of the warming event, indicating close resemblance to the results of other simultaneous investigations carried out from high latitude Antarctic stations. Convective activity over the present extratropical station diminishes remarkably during the warming period. This behavior is possibly due to destabilization and shift of equatorial convective active regions towards the opposite hemisphere in response to changes in the mean meridional circulation in concert with the SSW.  相似文献   

19.
Areas with dimensions of 1000–3000 km in which the total ozone content (TOC) decreases fast are called ozone mini-holes. They are generated mainly dynamically in two ways, either by poor-ozone air mass transport from the tropics to higher latitudes by planetary wave activity or, they are connected with strong adiabatic uplifting of the tropopause height. An ozone mini-hole, generated by the second mechanism, was observed over the Balkan Peninsula on 19/21 March 2005. In the middle of March, the polar vortex was strongly disturbed by Rossby waves, reaching up to the lower stratosphere. Warming episodes over a geographical area, covering the Barents Sea and the Polar Sea north from Central Siberia, displaced a polar vortex fragment extremely southwards. However, the vorticity was weak and the stratospheric temperatures did not reach low values, providing conditions for ozone chemical destruction via heterogenic reactions. At the same time, a Rossby wave ridge was located below the European polar fragment. In the period from 13 to 19 March, the thermal tropopause over Sofia was uplifted almost by 3 km. Ozone distributions observed by the SCIAMACHY instrument on 18–21 March show a fast TOC decrease westwards from Ireland, which was moving eastwards during the next days, increasing the area in which the ozone content decreased. On 20/21 March low ozone content was observed above the Stara Zagora (42°N, 25°E) ground-based station by means of the GASCOD instrument, using DOAS technique. The TOMS Earth probe instrument detected 237 DU over Sofia. This is a record low March value from the beginning of the TOMS instrument measurements in 1978. In March/April the ozone distribution was characterized by its mean annual maximum of 360 DU at 42°N.  相似文献   

20.
In this paper, we use canonical correlation analysis (CCA) method to investigate the semi-diurnal tidal winds in mesosphere and low thermosphere (MLT) region, observed by a newly installed meteor radar at Wuhan (30.6°N, 114.4°E), during the year 2002. In general, 4(3) effective semi-diurnal tidal pairs of patterns are obtained, which represent ∼2/3 total variances of the origin data set. These patterns are expected to be corresponding to the atmospheric oscillations within the semi-diurnal frequency band excited or modulated by different sources, i.e., the seasonal variations, the modulations by the planetary wave oscillations or the solar 27-day activity. Among all the patterns, the 1st pattern, which represents ∼1/3 of total variances, is the most notable. Its amplitudes show maximum values in spring and autumn, and the vertical wavelengths are longer in summer and shorter in winter, which is in line with the results obtained from traditional harmonic analysis. The vertical wavelengths of the higher order patterns (∼50 km) suggest the classic semi-tidal mode S(2, 4)/S(2, 5) is dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号