首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
The onset of Alfvén intermittent chaos in space plasmas is studied by numerically solving the derivative non-linear Schrödinger equation (DNLS) under the assumption of stationary Alfvén waves. We describe how the Alfvénic fluctuations of the magnetic field can evolve from periodic to chaotic behavior through a sequence of bifurcations as the dissipation is varied. The collision of a chaotic attractor with an unstable periodic orbit leads to the generation of strongly chaotic behavior, in an event known as interior crisis. We also show that in the DNLS equation, chaotic attractors coexist with non-attracting chaotic sets responsible for transient chaotic behavior. After the interior crisis point, a wide chaotic attractor can be decomposed into two coupled non-attracting chaotic sets, resulting in intermittent chaotic time series.  相似文献   

2.
A puzzling observation of solar wind MHD turbulence is the often seen Kolmogorov scaling of k-5/3k-5/3, even though the solar wind MHD turbulence is dominated by Alfvénic fluctuations. Recently Li et al. (2011) proposed that the presence of current sheets may be the cause of the Kolmogorov scaling. Here, using a cell model of the solar wind we examine the effect of current sheets on the power spectrum of the solar wind magnetic field. We model the solar wind as multiple cells separated by current sheets. We prescribe the spectra of turbulent magnetic field in individual cells as IK-like and examine the spectra along trajectories that cross multiple boundaries. We find that these spectra become softer and are consistent with the Kolmogorov-scaling. Our finding supports our recent proposal of Li et al. (2011).  相似文献   

3.
The solar wind is a high Reynolds’ number plasma flow of solar origin that permeates the whole heliosphere. It is also the only accessible medium in which to study collisionless magnetohydrodynamic turbulence performing direct measurements. This represents a topic of fundamental importance to both plasma physics and astrophysics. During the past decades, in situ observations on the ecliptic and at high heliographic latitudes have been very valuable to shed some light on the intricate nature of space plasma turbulence. In this brief review, we will mainly describe the evolution experienced by the turbulence as the solar wind expands into the interplanetary space. We will also address implications due to different processes of local generation of turbulence which might be at work on the ecliptic and at high latitude. Moreover, the fact that solar wind fluctuations are not isotropic and poorly single scale-invariant, two of the fundamental hypotheses at the basis of Kolmogorov’s theory (K41), will give us the possibility to discuss also the relevance of intermittency in the study of space plasma turbulence.  相似文献   

4.
The vertical total electron content (VTEC) time series obtained at São José dos Campos (23.2°S, 45.9°W), Brazil, were statistically analyzed to study the low latitude ionosphere in the Brazilian sector during the year of 2006 (a period of low solar activity). Statistical analysis showed that Probability Density Functions (PDFs) and kurtosis have an intermittent behavior on small-scales (periods from minutes to one day) and presence of two functions on large-scales (periods from 3 to 30 days). The skewness result suggests the presence of some kind of waves due to the action of tropospheric sources (lower atmospheric origin). Results obtained by wavelet transform show strong oscillations with scale-sizes between 3 and 30 days, possibly associated with the planetary oscillations. According to these statistical and wavelet analyses we conjecture that there exist two important factors regarding the ionospheric effects: one factor is due to turbulent states found in small scales and the other factor consists in a more or less deterministic state provided by planetary waves (3–16 days or full solar rotation (27–28 days)). Further, these strong oscillations were also noted in multifractal analysis. We found a decrease of multifractality degree of the same scale-sizes.  相似文献   

5.
We analyze the multifractal scaling of the modulus of the interplanetary magnetic field near and far upstream of the Earth’s bow shock, measured by Cluster and ACE, respectively, from 1 to 3 February 2002. The maximum order of the structure function is carefully estimated for each time series using two different techniques, to ensure the validity of our high-order statistics. The first technique consists of plotting the integrand of the pth order structure function, and the second technique is a quantitative method which relies on the power-law scaling of the extreme events. We compare the scaling exponents computed from the structure functions of magnetic field differences with the predictions obtained by the She–Lévêque model of intermittency in anisotropic magnetohydrodynamic turbulence. Our results show a good agreement between the model and the observations near and far upstream of the Earth’s bow shock, rendering support for the modelling of universal scaling laws based on the Kolmogorov phenomenology in the presence of sheet-like dissipative structures.  相似文献   

6.
Within the framework of the solar wind—magnetosphere coupled system, intense perturbations in the solar wind, causing geomagnetic storms and substorms, have been widely studied by means of the so-called coupling parameters. However, remarkable variations in the geomagnetic field occur even in absence of such perturbations. In those conditions, solar wind MHD turbulence might have a role. Recent results have shown that solar wind turbulence can be described not only as a mixture of inward and outward stochastic Alfvénic fluctuations, but includes also advected structures, dominated by an excess of magnetic energy.  相似文献   

7.
Data from coronal radio-sounding experiments carried out on various interplanetary spacecraft are used to derive the empirical radial dependence of solar wind velocity and density at heliocentric distances from 3 to 60 solar radii for heliolatitudes below 60° and for low solar activity. The radial dependencies of solar wind power and acceleration are derived from these results. Summaries of the radial behavior of characteristic parameters of the solar wind turbulence (e.g., the spectral index and the inner and outer turbulence scales), as well as the fractional density fluctuation, are also presented. These radio-sounding results provide a benchmark for models of the solar wind in its acceleration region.  相似文献   

8.
Long-term forecast of space weather allows in achieving a longer lead time for taking the necessary precautions against disturbances. Hence, there is a need for long-term forecasting of space weather. We studied the possibility for a long-term forecast of recurrent geomagnetic storms. Geomagnetic storms recur with an approximate 27-day period during the declining phase of a solar cycle. These disturbances are caused by the passage of corotating interaction regions, which are formed by interactions between the background slow-speed solar wind and high-speed solar wind streams from a coronal hole. In this study, we report on the performance of 27-day-ahead forecasts of the recurrent geomagnetic disturbances using Kp index. The methods of the forecasts are on the basis of persistence, autoregressive model, and categorical forecast using occurrence probability. The forecasts show better performance during the declining phase of a solar cycle than other phases. The categorical forecast shows the probability of detection (POD) more than 0.5 during the declining phase. Transition of the performance occurs sharply among the declining phases and other phases.  相似文献   

9.
The solar wind fills the heliosphere and is the background medium in which coronal mass ejections propagate. A realistic modelling of the solar wind is therefore essential for space weather research and for reliable predictions. Although the solar wind is highly anisotropic, magnetohydrodynamic (MHD) models are able to reproduce the global, average solar wind characteristics rather well. The modern computer power makes it possible to perform full three dimensional (3D) simulations in domains extending beyond the Earth’s orbit, to include observationally driven boundary conditions, and to implement even more realistic physics in the equations. In general, MHD models for the solar wind often make use of additional source and sink terms in order to mimic the observed solar wind parameters and/or they hide the not-explicitly modelled physical processes in a reduced or variable adiabatic index. Even the models that try to take as much as possible physics into account, still need additional source terms and fine tuning of the parameters in order to produce realistic results. In this paper we present a new and simple polytropic model for the solar wind, incorporating data from the ACE spacecraft to set the model parameters. This approach allows to reproduce the different types of solar wind, where the simulated plasma variables are in good correspondence with the observed solar wind plasma near 1 AU.  相似文献   

10.
    
针对飞轮早期故障难以检测、精确数学模型难以建立的问题,提出一种基于混沌吸引子特征的故障检测方法。该方法利用辅助曲面函数与系统参量构造离散动力系统,通过迭代产生近似混沌吸引子,正常数据与故障数据所产生的混沌吸引子形态不同,以此为特征进行故障检测。仿真结果表明,该方法构造的离散动力系统能够稳定地产生混沌吸引子;产生的混沌吸引子与初始迭代点无关;同种故障在不同工况下的特征相同;混沌吸引子特征对微小幅度的故障敏感。  相似文献   

11.
Waves in the Ultra Low Frequency (ULF) band owe their existence to solar wind turbulence and transport momentum and energy from the solar wind to the magnetosphere and farther down. Therefore an index based on ULF wave power could better characterize solar wind–magnetosphere interaction than KP, Dst, AE, etc. indices which described mainly quasi-study state condition of the system. We have shown that the ULF wave index accurately characterize relativistic electron dynamics in the magnetosphere as these waves are closely associated with circulation, diffusion and energization of relativistic electrons in the magnetosphere. High speed solar wind streams also act as a significant driver of activity in the Earth’s magnetosphere co-rotating interaction region and are responsible for geomagnetic activities. In the present paper, we have analyzed various cases related with very weak (quiet) days, weak days, storm days and eclipse events and discussed the utility of the ULF wave index to explain the magnetospheric dynamics and associated properties. We have tried to explain that the ULF wave index can equally be useful as a space weather parameter like the other indices.  相似文献   

12.
Using Lunar Prospector data, we review the magnetic field and electron signatures of solar wind interaction with lunar crustal magnetic sources. Magnetic field amplifications, too large to represent direct measurements of crustal fields, appear in the solar wind over strong crustal sources, with the chance of observing these amplifications depending on upstream solar wind parameters. We often observe increases in low-energy (?100 eV) electron energy fluxes simultaneously with large magnetic field amplifications, consistent with an increase in plasma density across a shock surface. We also often observe low frequency wave activity in the magnetic field data (both broadband turbulence and monochromatic waves), often associated with electron energization, sometimes up to keV energies. Electron energization appears to be correlated more closely with wave activity than with magnetic amplifications. Detailed studies of the interaction region will be necessary in order to understand the physics of the Moon–solar wind interaction. At present, the Moon represents the only natural laboratory available to us to study solar wind interaction with small-scale crustal magnetic fields, though simulation results and theoretical work can also help us understand the physical processes at work.  相似文献   

13.
Time-dependent kinetic-continuum model of the solar wind interaction with the two-component local interstellar cloud (LIC) has been developed recently [Izmodenov, V., Malama, Y.G., Ruderman, M.S. Solar cycle influence on the interaction of the solar wind with local interstellar cloud. Astron. Astrophys. 429, 1069–1080, 2005a.]. Here, we adopted this model to the realistic solar cycle, when the solar wind parameters at the Earth’s orbit are taken from space data. This paper focuses on the results related to the termination shock (TS) excursion with the solar cycle that may help to understand Voyager 1 data obtained at and after the crossing of the termination shock and to predict the time of the TS crossing by Voyager 2.  相似文献   

14.
We describe a tabular specification model of the density and temperature of ions and electrons at geosynchronous orbit as a function of magnetic local time and solar wind parameters. This model can be used to provide boundary conditions for numerical ring current models. Unlike previous specification models of geosynchronous plasma moments, this model is parameterized by upstream solar wind conditions. We find that solar wind parameters are a better predictor of geosynchronous ion density than magnetospheric indices, and as upstream parameters they are often more appropriate as model inputs since they causally precede the model outputs. Of the upstream parameters that were tested, the best predictors of geosynchronous conditions were the solar wind flow pressure and the magnitude and Z-component of the interplanetary magnetic field.  相似文献   

15.
AE指数表现出的磁层的浑沌行为   总被引:8,自引:1,他引:7  
时间序列的非线性预测误差可用来辨别产生这个时间序列的动力学系统是浑沌的还是随机的。据此,本文分析了自1982年1月30日12点开始的分辨率为1min的AE指数构成的时间序列,共15000个数据点。首先用其中的一部分数据构造了一个从非线性确定性的到线性统计的范围很宽的预测模型,然后利用此模型对另一部分数据进行预测。预测误差的结果表明,AE指数所表征的磁层具有浑沌行为。用同样的数据,利用滞后时间相空间重构法得到的系统吸引子的关联维为2.5.   相似文献   

16.
WSA太阳风经验模型及其应用   总被引:1,自引:1,他引:0       下载免费PDF全文
Wang-Sheely-Arge (WSA)模型是对准稳态太阳风的经验和物理相结合的描述,其利用观测的日面磁图作为输入,可以提前3到4天预测L1点处的太阳风速度和行星际磁场极性.WSA模型是在WS模型的基础上经过若干改进形成的实时预报模式,之后又借鉴Distance from the Coronal Hole Boundary (DCHB)模型的参数,进一步改进了太阳风速度关系式,形成了目前常见的形式.WSA经验模型由日冕磁场模型、太阳风速度关系式和一维运动学模型三部分组成.在实际应用过程中,基本步骤包括观测磁图预处理、日冕三维磁场反演、计算日冕磁场参数、计算太阳风的速度分布和将太阳风映射到1AU等环节.在发展过程中,WSA模型经历了一些细节上的调整变化,例如观测磁图数据的来源、日冕磁场模型的类型、经验速度关系中自由系数的取值等.许多研究对如何改善模型的预报效果进行了探索.   相似文献   

17.
地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,Dst和AE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.   相似文献   

18.
使用Cluster卫星的弓激波穿越数据,比较了Peredo弓激波模型、Merka弓激波模型、Chao弓激波模型和Lu弓激波模型在极端太阳风条件、偶极倾角较大和平静太阳风条件下的预测精度.结果表明:Peredo模型在极端太阳风条件和平静太阳风条件下的预测误差均较大;Merka模型在极端太阳风条件下的预测误差较大;Chao模型可以较为准确地描述平静太阳风条件下的弓激波位型,但不能准确描述偶极倾角较大时的弓激波位型;Lu模型可以同时准确描述极端太阳风条件和平静太阳风条件下的弓激波位型.   相似文献   

19.
一类TVD型组合差分方法及其在磁流体数值计算中的应用   总被引:4,自引:2,他引:4  
根据太阳风数值模拟的特点,考虑到算法的质量(收敛速度、稳定性、精度等),结合磁流体数值计算的特性,对三维球坐标磁流体动力学(MHD)方程组中的流体部分采用一种修正Lax-Friedrichs差分法而对磁场部分采用MacComack格式,发展了一类快捷的具有TVD特性的组合数值新方法,作为格式的检验,在一维情况下,将其与PPM格式进行了比较,对一维快慢磁流体激波问题得到了与PPM格式精度相同的结果,然后将其诮到定态太阳风的数值模拟上,在不同等离子体β情形下,可得到理想的太阳风定态结构,为今后将此数值模式应用到具有复杂磁场位型或三维直实太阳风暴的数值模拟研究奠定了基础。  相似文献   

20.
Different kinds of coronal holes are sources of different kind of solar winds. A successful solar wind acceleration model should be able to explain all those solar winds. For the modeling it is important to find a universal relation between the solar wind physical parameters, such as velocity, and coronal physical parameters such as magnetic field energy. To clarify the physical parameters which control the solar wind velocity, we have studied the relation between solar wind velocity and properties of its source region such as photospheric/coronal magnetic field and the size of each coronal hole during the solar minimum. The solar wind velocity structures were derived by using interplanetary scintillation tomography obtained at Solar-Terrestrial Environment Laboratory, Japan. Potential magnetic fields were calculated to identify the source region of the solar wind. HeI 1083 nm absorption line maps obtained at Kitt Peak National Solar Observatory were used to identify coronal holes. As a result, we found a relation during solar minimum between the solar wind velocity and the coronal magnetic condition which is applicable to different kind of solar winds from different kind of coronal holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号