共查询到20条相似文献,搜索用时 15 毫秒
1.
Marcin Jagoda Miłosława Rutkowska 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used. 相似文献
2.
D. Kucharski G. Kirchner F. Koidl E. Cristea 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,43(12):1926-1930
Satellite Laser Ranging (SLR) stations measure distance to the satellites equipped with Corner Cube Reflectors (CCRs). These range measurements contain information about spin parameters of the spacecraft. In this paper we present results of spin period determination of two passive satellites from SLR data only: 10 years of LAGEOS-1 (10426 values), and 15 years of LAGEOS-2 (15580 values). The measurements have been made by standard 10 Hz SLR systems and the first 2 kHz SLR system from Graz (Austria). The obtained data allowed calculation of the initial spin period of the satellites: 0.61 s for LAGEOS-1 and 0.906 s for LAGEOS-2. Long time series of the spin period values show that the satellite’s slowing down rate is not constant but is oscillating with a period of 846 days for LAGEOS-1 and 578 days for LAGEOS-2. The results presented here definitely prove that the SLR is a very efficient technique able to measure spin period of the geodetic satellites. 相似文献
3.
Akihisa Hattori Toshimichi Otsubo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):63-72
This study aims to investigate solar radiation pressure acting on the spherical geodetic satellites, Ajisai, LAGEOS-1, and LAGEOS-2. The solar radiation pressure coefficients () are derived in two independent ways: (a) through precise orbit determination (POD) using satellite laser ranging (SLR) data, and (b) through modeling using the optical properties of the satellite surface material. The average value of Ajisai (1.039), as calculated from the time series of POD estimates every 15?days, is consistently smaller than those of LAGEOS-1 (1.140) and LAGEOS-2 (1.103). This difference can be explained by the fact that the surface of Ajisai is mostly covered by mirrors. The Ajisai values estimated by POD show remarkable semi-annual variation, which disagrees with the results of a previous study (Sengoku et al., 1995) predicting that the of Ajisai varies almost annually. We attribute this semi-annual variation to two physical reasons: the non-spherical additional cross-sectional area due to the “attached fitting ring” and the low reflectivity of the surface material in the polar regions. Furthermore, the solar radiation pressure acting on Ajisai varies annually in a direction perpendicular to the sun-satellite vector. Finally, the two independent values of Ajisai agree more when we assume a total solar irradiance of 1361?W/m2, whereas the value 1367?W/m2 has been commonly used in POD. 相似文献
4.
P. Lejba S. Schillak 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001–2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North–South, East–West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS data. 相似文献
5.
设计空间监视卫星时,需要分析设计卫星与大量被监视空间飞行器的接近能力。通过具体仿真实例提出了一种基于摄动模型的快速最优接近轨道搜索方法,可以大大提高仿真速度,仿真结果证实了该方法的有效性,统计参数通过了精确模型的确认,也验证了算法的可信性。 相似文献
6.
卫星精密轨道确定过程实际上是通过求解轨道动力学微分方程组而对初始轨道不断改进的过程,因此,轨道确定的精度与速度不但依赖于求解微分方程组的具体算法,同样依赖于初始轨道的精度与准确性。针对多站测距/距离和数据,建立了一种轨道初值计算的几何方法,该方法集折射误差修正方法于一体,在进行观测数据折射误差修正的基础上,可以得到卫星在任意时刻的轨道初值。 相似文献
7.
8.
袁仕耿 《中国空间科学技术》1997,17(4):9-14,55
采用覆盖带技术,在全球多重连续覆盖、定倾角的条件下进行了星座设计。星座形式采用180°升交点分布,并考虑相邻轨道间的相对相位。文章介绍了覆盖带方法的基本概念,推导了同向区、反向区的约束方程,给出了其它必要的约束条件和解算方法。并在设计结果上有了一定的改进 相似文献
9.
讨论了以单脉冲方式使卫星由原轨道转入另一条新轨道的问题,给出了实现这种变轨的必要条件以及所需的速度增量。 相似文献
10.
首先,给出了卫星悬停的轨道动力学模型,然后提出了悬停轨道的一种\"持续式\"的开路轨道控制策略,即通过在一段时间对轨道实施连续有限推力控制,使得在这段时间内卫星运行在新的悬停轨道上,而非开普勒轨道。最后,以地球静止轨道卫星为目标星,研究了悬停轨道的实施途径,并进行了数学仿真。仿真结果表明,在一段时间内对空间目标实施轨道悬停是可行的。 相似文献
11.
李林森 《中国空间科学技术》1989,9(5):52-56
本文利用能量观点,研究了带有电荷的人造卫星在地球引力场和磁场中运行时,在大气阻力作用下的寿命问题。文中推出了带电卫星在圆形轨道上决定生存时间的理论公式,并用理论公式对卫星带电后,对其寿命的影响做了数值估计。 相似文献
12.
高晓阳 《中国空间科学技术》2000,20(3):37-42
以国际电联的相关建议为基础,就卫星网络轨道及频率协调中所碰到的若干问题,诸如天线增益,极化隔离,雨衰及SCPC保护比,给出了合理及可实现的估算方法,同时强调了功率密度在不同的应用场合,常有不同的定义方式。 相似文献
13.
低轨航天器天基测控方法研究 总被引:6,自引:0,他引:6
我国的航天器测控主要依赖地基测控系统实施,随着民用和军用需求的不断增加,太空运行的低轨航天器数量越来越多.仅依赖地基测控系统满足这些航天器的测控需求越来越困难,费用也越来越高.探索新的、有效且经济的测控模式势在必行.天基测控技术是航天器测控发展的方向,研究和应用天基测控技术具有重要的实用价值,可以解决困扰我国航天领域多年的测控资源紧张问题.在分析美国NASA数据与中继卫星系统相关技术的基础上,提出了我国低轨航天器天地基测控模式,讨论了该模式的运行原理,设计了该模式的仿真系统,分析了应用该模式需解决的关键技术问题,通过基于设计的仿真系统对提出的测控模式进行了验证.验证结果表明了提出的天地基测控模式可行,可以满足低轨航天器的测控需求. 相似文献
14.
杨维廉 《中国空间科学技术》2003,23(5):1-5
应用卫星绝大部分都是近圆轨道的卫星 ,其中又有很多是需要进行轨道控制的。在航天工程的实践中由于各种误差影响 ,实际的轨道控制过程并不是而且也没有必要基于精确的轨道动力学方程来执行。对于近圆轨道控制所用的动力学模型可以按圆轨道进行近似 ,得到一种非常简单的形式 ,基于这种简化的模型可以获得非常有用的分析解。为了从理论上证明这种简化的有效性 ,文中对动力学模型简化过程中所产生的各项误差进行了理论估计。 相似文献
15.
研究了用单个观测站粗略确定低轨卫星轨道的问题, 建立了在时间轴上拓展的测量方程组, 并着重讨论了其中的初值问题; 给出了两种基于线性变换的初值方法, 并对其性能做了比较。实验结果证明: 这些方法能给出一个确定的、实用的初值, 大大减少了初轨计算的计算量, 并使得算法收敛更加有保障, 在工程实用方面比传统的猜测方法具有较大优势。 相似文献
16.
针对圆形轨道串行卫星编队进行研究,推导出满足开普勒轨道假设的相对运动方程,从物理概念上证明了这种描述关系的正确性;并在此基础上利用星间测量信息,设计扩展卡尔曼滤波器进行相对轨道自主确定,仿真结果验证了此相对运动方程与导航方案的有效性。 相似文献
17.
18.
杨维廉 《中国空间科学技术》1991,11(1):1-6
在分析计算地球引力场球谐调和项引起的轨道摄动时,需用到倾角函数Ftmp(i)。如果直接应用其分析表达式,则计算量非常大。文中导出一组递推公式,利用这些递推公式可以大大简化计算,极大地减少计算时间。 相似文献
19.
杨维廉 《中国空间科学技术》1988,8(3)
一类地球观测卫星要求在特定的区域其高度变化最小,以便星上遥感器能始终处于最佳的距离范围内工作,这样就可以得到清晰的、比例尺基本不变的遥感图片。本文推导了这种最小高度变化轨道的条件,并给出了相应的参数。 相似文献
20.
W. Hausleitner G. Kirchner S. Krauss J. Weingrill R. Pail H. Goiginger D. Rieser 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Satellite gravity field missions such as CHAMP, GRACE and GOCE are designed as low Earth orbiting spacecraft (LEO) with orbit heights of about 250–500 km. The challenging mission objectives require a very precise knowledge of the satellite orbit position in space. For these missions precise orbit information is typically provided by GPS satellite-to-satellite tracking (SST) observations supported by satellite laser ranging (SLR). 相似文献