首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very low frequency interferometry among two astronomical experiments has been proposed and accepted for further study for the second phase of China’s lunar exploration programme (the Chang’E Programme), which is envisaged to operate a lander and a rover on the surface of the moon. This experiment is an interferometer experiment in the very low frequency (VLF, f < 15 MHz) regime of radio frequencies with at least degree-level angular resolution. The goals include observing solar storm activities, Coronal Mass Ejections, Auroral Kilometric Radiation, and planetary radiation in the solar system, studying the origin of Cosmic Rays, spectral properties of pulsars, surveying ionized hydrogen in the Galaxy, and exploring coherent radio emissions.  相似文献   

2.
“天问一号”任务是我国行星探测的首次任务,在国际上首次通过一次任务实现了火星“环绕、着陆、巡视”的三步跨越.“天问一号”探测器由中国空间技术研究院负责抓总研制,包括环绕器和着陆巡视器两个组成部分.对“天问一号”探测器的任务特点和概貌进行了介绍,对包括飞行过程、远距离深空通信、火星捕获过程、火星进入下降及着陆过程、火星车解锁驶离和火面工作等关键环节的设计方案进行了描述,对“天问一号”所取得的技术成果与创新进行了总结.  相似文献   

3.
The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.  相似文献   

4.
Fiber optic probes coupled to a Fourier Transform Infrared (FTIR) spectrometer allow sample analysis without the need to place the sample directly into the instrument. This is particularly attractive for spacecraft lander/rover applications where the additional mechanics, mass and cost associated with excavating and placing a small sample in a sample bay is not desirable. This paper uses numerical modeling to analyze fiber bundle array configurations and fiber numerical apertures to determine their light gathering efficiency and sample size as a function of probe-to-sample distance. The model was validated against experimental measurements for a selection of off the shelf fiber optic probes. The collection efficiency of a probe can be optimized by using a hexagonal packing method, and by using fibers with high numerical apertures. By increasing the numerical aperture of the fibers used in our model probes from 0.2 to 0.5, we were able to increase the collection efficiency of a seven fiber probe from 4.5% to 9.5%, with the peak collection efficiency corresponding to a spot size of diameter 3 mm.  相似文献   

5.
Jupiter’s icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa’s surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 μm, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.  相似文献   

6.
Three major features make Europa a unique scientific target for a lander-oriented interplanetary mission: (1) the knowledge of the composition of the surface of Europa is limited to interpretations of the spectral data, (2) a lander could provide unique new information about outer parts of the solar system, and (3) Europa may have a subsurface ocean that potentially may harbor life, the traces of which may occur on the surface and could be sampled directly by a lander. These characteristics of Europa bring the requirement of safe landing to the highest priority level because any successful landing on the surface of this moon will yield scientific results of fundamental importance. The safety requirements include four major components. (1) A landing site should preferentially be on the anti-Jovian hemisphere of Europa in order to facilitate the orbital maneuvers of the spacecraft. (2) A landing site should be on the leading hemisphere of Europa in order to extend the lifetime of a lander and sample pristine material of the planet. (3) Images with the highest possible resolution must be available for the selection of landing sites. (4) The terrain for landing must have morphology (relief) that minimizes the risk of landing and represents a target that is important from a scientific point of view. These components severely restrict the selection of regions for landing on the surface of Europa. After the photogeologic analysis of all Galileo images with a resolution of better than about 70 m/pixel taken for the leading hemisphere of Europa, we propose one primary and two secondary (backup) landing sites. The primary site (51.8°S, 177.2°W) is within a pull-apart zone affected by a small chaos. The first backup site (68.1°S, 196.7°W) is also inside of a pull-apart zone and is covered by images of the lower resolution (51.4 m/pixel). The second backup site (2.4°N, 181.1°W) is imaged by relatively low-resolution images (∼70 m/pixel) and corresponds to a cluster of small patches of dark and probably smooth plains that may represent landing targets of the highest scientific priority from the scientific point of view. The lack of the high-resolution images for this region prevents, however, its selection as the primary landing target.  相似文献   

7.
The radiation environment on the surface of the Moon presents a new source of particles resulting from the interaction of incoming solar protons and galactic cosmic rays with the lunar regolith. Here we present a study of the fluence profile of primary and secondary particles on the top 1 m layer of lunar regolith for the spectrum of one of the hardest spectrum solar event, that of February 1956. Different regolith compositions and their influence in proton and neutron production and backscattering is considered, as well as the nature of the backscattered radiation. Simple geometry Monte Carlo simulations have been used also for calculating regolith shielding properties, and it is shown that a layer of at least 50 cm regolith is needed for significantly reducing the dose levels received by astronauts in a hypothetical lunar habitat.  相似文献   

8.
深空探测车可变直径车轮牵引通过性分析   总被引:4,自引:2,他引:2  
提出了一种可变直径轮深空探测车,其具有结构紧凑、越障能力强、重心低、运行平稳等优点.考虑了月球重力环境和月壤的力学特性,应用基于贝克模型的地面力学理论,分析了深空探测车可变直径车轮与月壤间的相互作用,对轮片展开和车轮下陷做了合理的简化,对不同滑转条件下探测车轮的挂钩牵引力、驱动力矩和驱动效率进行了计算,结果表明车轮的展开减小了推土阻力,车轮的挂钩牵引力和驱动效率都比车轮收缩状态有了明显的提高,并获得了使驱动效率达到最大值的滑转率的范围.   相似文献   

9.
In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > −25 °C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis.  相似文献   

10.
Korea is planning a series of lunar space programs in 2020 starting with a lunar orbiter and a lander with a rover. Compared to other countries, Korea has a relatively brief history in space and planetary sciences. With the expected Korean missions on the near-term horizon and the relatively few Korean planetary scientists, Korea Institute of Geoscience and Mineral Resources (KIGAM) has established a new planetary research group focusing on development of prospective lunar instruments, analysis of the publicly available planetary data of the Moon, organizing nationwide planetary workshops, and initiating planetary educational programs with academic institutions. Korea has also initiated its own rocket development program, which could acquire a rocket-launch capability toward the Korean lunar mission. For the prospective Korea’s lunar science program, feasibility studies for some candidate science payloads have been started since 2010 for an orbiter and a lander. The concept design of each candidate instrument has been accomplished in 2012. It is expected that the development of science payloads may start by 2014 as Phase A. Not only developing hardware required for the lunar mission but also educational activities for young students are high priorities for Korea. The new plan of the Korean lunar mission can be successfully accomplished with international cooperative outreach programs in conjunction with internationally accessible planetary data system (PDS). This paper introduces the KIGAM’s international cooperative planetary research and educational programs and also summarizes other nationwide new developments for Korean lunar research projects at Kyung Hee University and Hanyang University.  相似文献   

11.
The heat transfer in a regolith subsurface layer of thickness 20 m has been theoretically simulated for the areas near Mercury's north pole aiming at the clarification of the possible existence of subsurface ice formations of different form. The paper considers different models of the icy regolith structure and composition: pure uniform amorphous ice; a porous dispersive system with ice-filled pores and voids; permafrost. For comparison the heat transfer in dry iceless regolith has been considered as well. It has been shown that the line of maximum distribution of subsurface icy formations depends on the icy regolith model, but for any one in the “hot” regions it does not go below 70°. For the “cool” regions this line has been shown to go from 5° to 10° southward than that for the “hot” ones. The possible thickness of icy regolith near the pole has been estimated for different models assuming an interior heat flow of 15 mW m−2. It has been shown that the maximum thickness of this layer takes place at the pole and is equal to 10 km for any model.  相似文献   

12.
A miniaturized in situ laser induced breakdown spectroscope-LIBS is one of the two lunar rover payloads to be flown in India’s next lunar mission Chandrayaan-2, with an objective to carry-out a precise qualitative and quantitative elemental analyses of lunar regolith at the proximity of the landing region. As per the imposed mission constraints and the executed design optimization studies, a compact and light-weight LIBS prototype model is developed at our premises. This paper mainly concerns with the estimation of theoretical aspects; especially on evaluation of elemental ablation parameters and signal-to-noise ratio (SNR) calculations for the designed instrument. Theoretical estimations and simulations yielded an incident laser power density of the order of 5 × 1010 W/cm2 on the target surface at a defined lens-to-surface distance (LTSD) of 200 mm and revealed an SNR > 100 for most of the elements under consideration. This paper also addresses the impact of LTSD variation on detection capability. The estimation of plasma-temperatures was carried out utilizing the emission spectra obtained under high vacuum environments employing the LIBS laboratory model. Experimental investigations and the performed theoretical estimations asserted the successful operation of the configured LIBS instrument for in situ elemental analyses on lunar surface.  相似文献   

13.
One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.  相似文献   

14.
The Lunar Regolith Penetrating Radar (LRPR) is an Ultra-Wideband (UWB) array-based Ground penetrating radar (GPR) onboard the lander of Chang’e-5 (CE-5) mission. The primary scientific objectives of the LRPR are to probe the thickness and structure of lunar regolith of the landing site, and support the drilling and sampling process. In order to evaluate the performance of the LRPR, a series of ground experiments are performed using the LRPR prototype mounted on a CE-5 lander model. The performance of the LRPR is evaluated by comparing the experimental data with the simulated data. Data processing and imaging method are verified, and the interferences from the lander and other aspects are analyzed. The results of the ground experiments and simulation demonstrate that the LRPR is able to meet the design requirement of 2-m detection depth. They also indicate that the upper and lower interfaces of the stratified structure in the lunar regolith can be well distinguished by the LRPR when the dielectric constant difference is greater than 0.3, and the imaging effect of the location under the dense antennas is better than that of other positions. However, the identification capability of the LRPR to the independent blocky objects is relatively poor mainly due to the clutters caused by the lander, the sparsity of the antenna elements compared to the size of the basalt block, the limited aperture of the antenna array, and the tail of the transmitted waveform.  相似文献   

15.
This paper describes the scientific objectives and payloads of Tianwen-1, China’s first exploration mission to Mars. An orbiter, carrying a lander and a rover, lifted-off in July 2020 for a journey to Mars where it should arrive in February 2021. A suite of 13 scientific payloads, for in-situ and remote sensing, autonomously commanded by integrated payload controllers and mounted on the orbiter and the rover will study the magnetosphere and ionosphere of Mars and the relation with the solar wind, the atmosphere, surface and subsurface of the planet, looking at the topography, composition and structure and in particular for subsurface ice. The mission will also investigate Mars climate history. It is expected that Tianwen-1 will contribute significantly to advance our scientific knowledge of Mars.  相似文献   

16.
Areas with dimensions of 1000–3000 km in which the total ozone content (TOC) decreases fast are called ozone mini-holes. They are generated mainly dynamically in two ways, either by poor-ozone air mass transport from the tropics to higher latitudes by planetary wave activity or, they are connected with strong adiabatic uplifting of the tropopause height. An ozone mini-hole, generated by the second mechanism, was observed over the Balkan Peninsula on 19/21 March 2005. In the middle of March, the polar vortex was strongly disturbed by Rossby waves, reaching up to the lower stratosphere. Warming episodes over a geographical area, covering the Barents Sea and the Polar Sea north from Central Siberia, displaced a polar vortex fragment extremely southwards. However, the vorticity was weak and the stratospheric temperatures did not reach low values, providing conditions for ozone chemical destruction via heterogenic reactions. At the same time, a Rossby wave ridge was located below the European polar fragment. In the period from 13 to 19 March, the thermal tropopause over Sofia was uplifted almost by 3 km. Ozone distributions observed by the SCIAMACHY instrument on 18–21 March show a fast TOC decrease westwards from Ireland, which was moving eastwards during the next days, increasing the area in which the ozone content decreased. On 20/21 March low ozone content was observed above the Stara Zagora (42°N, 25°E) ground-based station by means of the GASCOD instrument, using DOAS technique. The TOMS Earth probe instrument detected 237 DU over Sofia. This is a record low March value from the beginning of the TOMS instrument measurements in 1978. In March/April the ozone distribution was characterized by its mean annual maximum of 360 DU at 42°N.  相似文献   

17.
The European Space Agency’s Huygens probe separated from the NASA Cassini spacecraft on 25 December 2004, after having been attached for a 7-year interplanetary journey and three orbits around Saturn. The probe reached the predefined NASA/ESA interface point on 14 January 2005 at 09:05:52.523 (UTC). It performed a successful entry and descent sequence and softly landed on Titan’s surface on the same day at 11:38:10.77 (UTC) with a speed of about 4.54 m/s. Since the publication of the official project entry and descent trajectory reconstruction effort by the Descent Trajectory Working Group in 2007 (referred to as DTWG#4) various other efforts have been performed and published. This paper presents an overview of the most relevant reconstructions and compares their methodologies and results. Furthermore, the results of a new reconstruction effort (DTWG#5) are presented, which is based on the same methodology as DTWG#4 but takes into account new estimates of Titan’s pole coordinates which were derived from radar images of different Cassini Titan flybys. It can be shown that the primary effect can be observed in the meridional direction which is represented by a stark southward shift of the trajectory by about 0.3 deg. A much smaller effect is seen in the zonal direction (i.e., less than 0.01 deg in the west to east direction). The revised probe landing coordinates are 192.335 deg W and 10.573 deg S. A comparison of these coordinates with results of recent landing site investigations using visual and radar images of the Cassini VIMS instrument shows excellent agreement of the two independently derived landing coordinates, i.e., longitude and latitude residuals of respectively 0.035 deg and 0.007 deg.  相似文献   

18.
为了提高"嫦娥3号"探测器(着陆器和巡视器)的相对定位精度,针对两器信标实际设置情况,设计了同波束干涉测量(same-beam interferometry,SBI)观测方案。利用着陆器和巡视器星地对接数据分析检验了由差分群时延解算含微小系统差的差分相时延的方法,给出了甚长基线干涉测量(very long baseline interferometry,VLBI)和同波束干涉测量模型及月面定位方法,并仿真分析了巡视器的相对定位精度。最终,把研究的方法实际应用于"嫦娥3号"巡视器的精密相对定位。结果表明,利用1h左右的连续观测弧段的着陆器数传信号以及巡视器数传信号(或遥测信号),采用事后处理方式,得到了随机误差约1ps的差分相时延数据。利用此数据,把"嫦娥3号"探测器的相对定位精度提高至1m左右。  相似文献   

19.
月球着陆器模型参数修正   总被引:1,自引:1,他引:0  
建立了着陆器的参数化模型,把着陆碰撞过程简化为弹簧阻尼模型,将其中的刚度、阻尼、非线性指数和最大穿透深度作为修正参数;定义了判断着陆器是否翻倒的着陆稳定性平面.基于地面稳定性试验结果,利用ADAMS和Isight软件联合仿真,采用优化拉丁方试验设计缩小修正参数范围.基于模型修正理论,采用自适应模拟退火算法进行模型参数修正,修正效果明显,修正后的仿真模型更符合实际试验样机.  相似文献   

20.
The release of NaK droplets has been modeled for the new version of the European Meteoroid and Space Debris Terrestrial Environment Reference model MASTER-2005. Previously published versions of the model have been revised. The parameters of the model are introduced and discussed. NaK droplets consist of eutectic sodium–potassium alloy and have been released during RORSAT reactor core ejections. They contributed to the space debris environment in the centimeter and millimeter size regime. Sixteen nuclear powered RORSATs launched between 1980 and 1988 activated a reactor core ejection system in Sufficiently High Orbits (SHO), mostly between 900 and 950 km altitude. The core ejection caused an opening of the primary coolant circuit. The liquid coolant has been released into space during these core ejections. The outflow is considered as a discrete event for each of the sixteen core ejections in total. The NaK coolant has been forming droplets up to a diameter of 5.5 cm. NaK releases are restricted to a very narrow region near 65° inclination. This paper gives the parameters of the NaK release model as it is implemented in MASTER-2005. The quantitative values of all model parameters including characteristic diameter and uniformity parameter are presented. The ratio of the characteristic droplet size to the orifice diameter is discussed. It is estimated that altogether 128 kg of NaK-78 (8 kg per RORSAT) was released on orbit. Simulation runs show that there are still 45,000 droplets with a total mass of 97 kg in orbit at the reference epoch 1 May 2005, whereas the smallest droplet has a diameter of 5 mm. Results of orbit propagation simulation runs are presented in terms of spatial density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号