首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (~1 MK) and hot (~6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1–6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.  相似文献   

2.
The Russian microsatellite “Universitetskiy-Tatiana” was launched on Jan. 20, 2005 and was both a scientific and educational mission. Its two main aims were declared as: (1) monitoring of the energetic particles dynamics in the near-Earth space environment after solar events and during quiet times, (2) educational activities based on experimental data obtained from the spacecraft. In this paper observations acquired during Dec. 5–16, 2006, known as “Solar Extreme Events 2006”, were analyzed. The “Universitetskiy-Tatiana” microsatellite orbit permits one to measure both solar energetic particle dynamics, variations of the boundary of solar particle penetration, as well as relativistic and sub-relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. Both relativistic electrons of the Earth’s outer radiation and solar energetic particles are an important source of radiation damage in near-Earth space. Therefore, the presented experimental results demonstrate the successful application of a small educational spacecraft both for scientific and educational programs.  相似文献   

3.
The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996–2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME–flare associated events. The results show that CME–flare associated events are triggered with a lift-off time within the range 0.4–1.0 h. We list a set of 41 CME–flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME–flare associated events with correlation coefficient of 0.76.  相似文献   

4.
Radio bursts with fine structures in decimetric–centimetric wave range are generally believed to manifest the primary energy release process during flare/CME events. By spectropolarimeters in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz at NAOC/Huairou with very high temporal (1.25–8 ms) and spectral (4–20 MHz) resolutions, the zebra patterns, spikes, and new types of radio fine structures with mixed frequency drift features are observed during several significant flare/CME events. In this paper we will discuss the occurrence of radio fine structures during the impulsive phase of flares and/or CME initiations, which may be connected to the magnetic reconnection processes.  相似文献   

5.
The solar wind wave heating models require substantial amount of wave power in order to efficiently heat and accelerate solar wind. The level of fluctuations is however limited by energetic particle observations. The simplest cyclotron sweep models result in convection-dominated transport, contradicting observations. However, models incorporating wave-wave -interactions, which cause wave energy to cascade in wavenumber, allow more reasonable energetic particle transport in the interplanetary space. The mean free path of the energetic particles remains still relatively short in the corona, providing favorable conditions for coronal mass ejection (CME) related shock acceleration. We study the consequences of this scenario on the energetic particle production related to CMEs. The role of self-generated waves is also discussed.  相似文献   

6.
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit.  相似文献   

7.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   

8.
Campaigns to investigate the solar coronal mass ejection (CME) onset have been run using the Solar andHeliospheric Observatory (SOHO) since 1996. These have included coronagraph and extreme-ultraviolet (EUV) disc imaging, along with magnetic mapping of the photosphere, in concert with EUV and UV spectroscopic observations. These campaigns have included co-ordination with ground-based observatories, and with other spacecraft, especially Yohkoh and the Transition Region and Corona Explorer (TRACE). This multi-instrument, multi-spacecraft effort has provided many rewards, with some spectacular observations of countless eruptions. It has included the discovery of unexpected phenomena such as EUV waves and groundbreaking work on coronal dimming, and the development of sigmoidal shaped structures. Much has been learnt about the CME onset yet the most basic questions still remain. We have an unprecedented view of CME eruptions, yet we are still unable to identify clearly the onset process and we do not fully understand the CME-flare relationship. With all of the campaigns producing excellent multi-wavelength observations of CMEs, how far have we progressed in the understanding of the CME onset and, in particular, the CME-flare relationship? Can we identify lines of research using the SOHO data, which will provide the answers we seek — or do we need fundamentally different observation scenarios? It is the author's opinion that we actually have the observational tools required to understand much about the onset process and the CME/flare links, and the emphasis should be on understanding the limitations of our instrumentation and on removing any preconceived ideas from our interpretations.  相似文献   

9.
Several methods for CME speed estimation are discussed. These include velocity derivation based on the frequency drifts observed in metric and decametric radio wave data using a range of coronal density models. Coronagraph height–time plots allow measurement of plane-of-sky and expansion speeds. These in turn can enable propagation speeds to be derived from a range of empirical relations. Simple geometric e.g., cone, models can provide propagation velocity estimates for suitable halo or partial halo events. Interplanetary scintillation observations allow speed estimates at large distances from the Sun detecting in particular the deceleration of the faster CMEs. Related interplanetary shocks and the arrival times and speeds of the associated magnetic clouds at Earth can also be considered. We discuss the application of some of these methods to the transit to Earth of a complex CME that originated earlier than 16:54 U.T. on 07-NOV-2004. The difficulties in making velocity estimates from radio observations, particularly under disturbed coronal conditions, are highlighted.  相似文献   

10.
Many physical processes precede and accompany the solar energetic particles (SEP) occurrence on the Earth’s orbit. Explosive energy release on the Sun gives rise to a flare and a coronal mass ejection (CME). X-ray and gamma emissions are believed to be connected with flares. Radio emission is signature of disturbances traveling through the corona and interplanetary space. Particles can gain energy both in the flare and the accompanying wave processes. The beginning of the SEP events has the advantage of being the phase most close to the time of acceleration. Influence of interplanetary transport is minimal in the case of first arriving relativistic solar protons recorded by ground based neutron monitors in so called ground-level enhancements (GLE). The early phase of the SEP events attracts attention of many scientists searching for the understanding of particle acceleration. However, they come to the opposite conclusions. While some authors find arguments for coronal mass ejections as a sole accelerator of SEPs, others prove a flare to be the SEP origin. Here, the circumstances of SEP generation for several GLEs of the 23rd solar cycle are considered. Timing of X-ray, CME, and radio emissions shows a great variety from event to event. However, the time of particle ejection from the Sun is closer to maximum of X-ray emission than to any other phenomena considered. No correlation is found between the particle fluxes and the CME characteristics.  相似文献   

11.
12.
Extreme events are defined as those events in which the characteristics (e.g. field strength, speed, intensity of radiation, energies) of the associated phenomena (e.g. solar flares, coronal mass ejections, solar proton events) are some orders of magnitude larger than in other events. Such strong events commonly occur about two years before and after sunspot maximum and some strong events occur as well in the declining phase before the solar activity minimum [Bothmer V., Zhukov A. The 11 Sun as the prime source of space weather, in: Bothmer, V., Daglis, I. (Eds.), Space Weather: Physics and Effects, Springer Praxis Books, 12 pp. 438, 2007]. In the first part of the paper the characteristics of the Jan. 2005 and Dec. 2006 events are given. This is followed by a presentation of the effects that were encountered on technological systems and also addresses the issue of what could have occurred on biological systems during such events. The second part of the paper deals with how one should go about analyzing solar extreme events - as part of the global distribution of all events or as ”outliers” with their own special characteristics.  相似文献   

13.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

14.
综合运用SOHO/LASCO、SOHO/EIT关于CME的观测结果和WIND飞船关于太阳风的观测记录,识别了1998年4月下旬至5月上旬发生的磁暴的CME源,分析了与5月初强磁暴群相联系的日地事件。结果表明,所用日地扰动事件关系认证的方法是可行的,本文就上述日地事件所涉及的磁暴群与活动区的关系、CME地磁效应的日面东西不对称性以及磁云与高速流的作用等问题进行了讨论。  相似文献   

15.
Three “SZ” Atmospheric Composition Detectors (ACDs) on board spacecraft “SZ-2”, “SZ-3” and “SZ-4” were launched on 10th January 2001, 26th March 2002 and 31st December 2002 separately. A large quantity of thermospheric composition data at the orbital altitude ranging from 330 to 362 km were collected from the in-situ measurement of ACDs. The spacecrafts’ lifetime was just in the second peak period of the 23rd solar cycle which includes two peaks and the solar activity value F10.7 was from 89 to 228. During this period, several intense geomagnetic disturbances happened.  相似文献   

16.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   

17.
We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG Hα, STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.  相似文献   

18.
The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal mass ejections (CME). They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematic characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematic properties. That lack of agreement is reflected in both the manual and automated CME catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced recently the concept of “texture of the event”. Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic events observed in the coronagraphs field of view, which is called CORonal SEgmentation Technique (CORSET). In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematic parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from three existent CME lists: two of them obtained from an observer-based detection and tracking method (i.e., two manual catalogs), and the other one based on the automated detection and characterization of the CME events (i.e., a fully automated catalog). We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are in agreement with the manual catalogs used for comparison. On the other hand, some discrepancies between CORSET and the automated catalog were found, which can be explained by the different delimitation of the CME angular extent.  相似文献   

19.
We present our research on a fast and decelerating partial halo coronal mass ejection (CME) event detected in multi-wavelengths in the chromosphere and the corona on 14 October, 1999. The event involved a whole complex active area which spanned more than 40° of heliolongitude. It included a strong solar flare (XI/1N) and a complex eruptive filament within an active region of the entire complex. Especially, several radio sources were detected in the decimetric range prior to the CME by the Nançay Radioheliograph (NRH). A linear force-free field extrapolation of the Michelson Doppler Imager (MDI) magnetogram was performed to calculate the magnetic topology of the complex prior to the triggering of the event. The presence of a coronal null point combined with the occurrence of two distant and nearly simultaneous radio sources put strong arguments in favor of the generalized breakout model for the triggering of the eruption. The analysis of the subsequent development of the event suggests that large interconnecting loops were ejected together with the CME.  相似文献   

20.
It is common to use imaging instruments such as EUV and X-ray imagers and coronagraphs to study large-scale phenomena such as coronal mass ejections and coronal waves. Although high resolution spectroscopy is generally limited to a small field of view, its importance in understanding global phenomena should not be under-estimated. I will review current spectroscopic observations of large-scale dynamic phenomena such as global coronal waves and coronal mass ejections. The aim is to determine plasma parameters such as flows, temperatures and densities to obtain a physical understanding of these phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号