共查询到10条相似文献,搜索用时 0 毫秒
1.
R.P. Aswathy G. Manju 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(4):1254-1260
The seasonal and solar activity variation of the post sunset F- region zonal plasma drift, at the magnetic equatorial region over Indian longitudes is analyzed using the Republic of China Satellite-1 data from January 2000 to April 2004. The post sunset F- region zonal drifts are observed to be higher in the years of high solar activity in comparison with low solar activity, while seasonally the drifts are minimum in summer with much higher values in other seasons. The seasonal and solar activity variations of zonal plasma drift are attributed to the corresponding variations in the neutral winds. The dependences of the F region peak vertical drift on the zonal plasma drift at 18.5 IST (Indian Standard Time) and the time difference of the conjugate points sunset times, are quantitatively analyzed. Further an integrated parameter (incorporating the above mentioned two independent factors), which is able to predict the peak vertical drift and growth rate of Rayleigh Taylor instability is proposed. The other major outcome of the study is the successful prediction of the Equatorial Spread F (ESF) onset time and duration using the new integrated parameter at 18.5 IST. ESF irregularities and associated scintillations adversely affect communication and navigation systems. Hence, the present methodology for the prediction of the characteristics of these nocturnal irregularities becomes relevant. 相似文献
2.
Chunhua Jiang Hui Hu Guobin Yang Jing Liu Zhengyu Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3167-3176
Ionograms recorded at Puer station (PUR, 22.7°N, 101.05°E, Dip Latitude 12.9°N) in the Southwest of China from January 2015 to December 2016 were used to study characteristics of the F2 layer stratification at the northern equatorial ionization anomaly. Ionosonde observations show that the development of the F2 layer stratification is different under different conditions. Both the upward and downward movement of the F2 layer stratification could be observed. The F2 layer stratification could occur both at daytime and nighttime. The new cusp could originate from different positions on ionograms. Moreover, statistical results indicate that the F2 layer stratification occurred later in the winter than in other seasons at daytime, it occurred frequently in the local spring, and most of ionograms with the F2 layer stratification at post-midnight occurred in March and April. Our results also show that the F2 layer stratification has a correlation with solar activity. 相似文献
3.
P.R. Fagundes V. Klausner J.A. Bittencourt Y. Sahai J.R. Abalde 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The occurrence of an additional F3-layer has been reported at Brazilian, Indian and Asian sectors by several investigators. In this paper, we report for the first time the seasonal variations of F3-layer carried out near the southern crest of the equatorial ionospheric anomaly (EIA) at São José dos Campos (23.2°S, 45.0°W; dip latitude 17.6°S – Brazil) as a function of solar cycle. The period from September 2000 to August 2001 is used as representative of high solar activity (HSA) and the period from January 2006 to December 2006 as representative of low solar activity (LSA). This investigation shows that during HSA there is a maximum occurrence of F3-layer during summer time and a minimum during winter time. However, during LSA, there is no seasonal variation in the F3-layer occurrence. Also, the frequency of occurrence of the F3-layer during HSA is 11 times more than during LSA. 相似文献
4.
Effect of the seed perturbation amplitude on the equatorial spread F initiation during solar minimum
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(1):255-267
The contribution of gravity wave (GW) to the initiation/development of spread F during a solar minimum year was investigated through the comparison of the observed precursory parameters and characteristics of the corresponding equatorial spread F (ESF) events. The ionospheric parameters were recorded at the magnetic equatorial station Sao Luis (2.3°S, 44°W, dip latitude 2°S) during March and October 2010. These data were used to estimate the influence of the relative gravity wave amplitude and the ambient ionospheric condition on the diurnal variation of the spread F initiation. The vertical velocity drift indicated a clear control and defines the threshold for the seasonal variability of the ESF occurrence. However, it was insufficient to solely determine or predict the day to day variation of ESF occurrence. Thus, few days with contrasting ambient ionospheric condition and magnitude of GW amplitude were analysed in order to investigate the role of the different precursory factors in the observed diurnal variation of the plasma irregularity development. The density scale length and gravity wave amplitude were shown to immensely contribute to the linear instability growth rate, especially during the days with a low post-sunset rise. Thus, the experimental observations have demonstrated the strong inter-dependence between the precursory factors and they have also highlighted the probable control of the ESF morphology. 相似文献
5.
Libo Liu Weixing WanBaiqi Ning Man-Lian ZhangMaosheng He Xinan Yue 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI. 相似文献
6.
7.
O.S. Oyekola 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling. 相似文献
8.
Patrick A. Nsumei Bodo W. Reinisch Xueqin Huang Dieter Bilitza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The ionospheric characteristics of the F2 layer peak have been measured with ionosondes from the ground or with satellites from space. The most common characteristics are the F2-peak density NmF2 and peak height hmF2. In addition to these two parameters this paper studies the F2-peak scale height. Comparing the median values of hmF2 and NmF2 obtained from topside and bottomside sounding shows good agreement in general. The Chapman scale height values for the F2 layer peak derived from topside profiles, Hm,top, are generally several times larger than Hm,bot derived from bottomside profiles. 相似文献
9.
N. Zolotukhina N. Polekh E. Romanova A. Polyakova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases. 相似文献
10.
Linfeng Huang Jinsong Wang Yong Jiang Jiang Huang Zhou Chen Kai Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4−). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak. 相似文献