首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The current paradigm for the source of large, gradual solar energetic particle (SEP) events is that theyare accelerated in coronal/interplanetary shocks driven by coronal mass ejections (CMEs). Early studies established that there is a rough correlation between the logs of the CME speed and the logs of the SEP intensities. Here I review two topics challenging the basic paradigm, the recent discovery that CMEs are also associated with impulsive, high-Z rich SEP events and the search for gradual SEP sources other than CME-driven shocks. I then discuss three topics of recent interest dealing with the relationship between the shock or CME properties and the resulting SEP events. These are the roles that CME accelerations, interactions between fast and preceding slow CMEs, and widths of fast CMEs may play in SEP production.  相似文献   

2.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   

3.
We have established a data set of 58 major hybrid SEP events associated with meter-to-decahectometer wavelength (m-to-DH) type II bursts, solar flares, and radio-load CMEs during the period of 1997–2014. The main focus of our study is to address the following two questions: Does the interaction of CMEs play a role in the enhancement of SEP intensity? Is there any difference in the seed population, and parent eruptions in the SEP events with and without CME interactions? Hence, the sample of 58 events is classified into two sets: (i) 35 non-interacting-CME-associated SEP events; (ii) 23 interacting-CME-associated SEP events. All the characteristics of SEPs, their associated CMEs/flares and the relationships between them are statistically analyzed and compared. Some of the basic attributes and relative elemental abundances (Fe/O ratios) of the both the sets are also compared. The results indicate that the seed particles in non-interacting-CME-associated SEP events are mostly from solar wind/coronal materials. But in the case of interacting-CME-associated SEP events, it may be associated with both flare material from preceding flares and coronal materials from solar wind/preceding CMEs. The correlation studies reveal that there are clear correlations between logarithmic peak intensity of SEP events and properties of CMEs (space speed: cc?=?0.56) and solar flares (peak intensity: cc?=?0.40; integrated flux: cc?=?0.52) for non-interacting-CME-associated SEP events. But these correlations are absent for the interacting-CME-associated events. In addition, the results suggest that interaction of primary CMEs with their preceding CMEs plays an important role in the enhancement of peak intensity of SEPs at least for a set of m-to-DH type II bursts associated SEP events.  相似文献   

4.
Energetic particle signatures of geoeffective coronal mass ejections   总被引:1,自引:0,他引:1  
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms.  相似文献   

5.
This study performs simulations of interplanetary coronal mass ejection (ICME) propagation in a realistic three-dimensional (3D) solar wind structure from the Sun to the Earth by using the newly developed hybrid code, HAFv.2+3DMHD. This model combines two simulation codes, Hakamada–Akasofu–Fry code version 2 (HAFv.2) and a fully 3D, time-dependent MHD simulation code. The solar wind structure is simulated out to 0.08 AU (18 Rs) from source surface maps using the HAFv.2 code. The outputs at 0.08 AU are then used to provide inputs for the lower boundary, at that location, of the 3D MHD code to calculate solar wind and its evolution to 1 AU and beyond. A dynamic disturbance, mimicking a particular flare’s energy output, is delivered to this non-uniform structure to model the evolution and interplanetary propagation of ICMEs (including their shocks). We then show the interaction between two ICMEs and the dynamic process during the overtaking of one shock by the other. The results show that both CMEs and heliosphere current sheet/plasma sheet were deformed by interacting with each other.  相似文献   

6.
Two successive solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs) on 2001 April 14 and 15 are compared. The weak SEP event of April 14 associated with an 830 km/s CME and an M1.0 flare was the largest impulsive event of cycle 23. The April 15 event, the largest ground level event of cycle 23, was three orders of magnitude more intense than the April 14th event and was associated with a faster CME (1200 km/s) and an X14.4 flare. We compiled and compared all the activities (flares, CMEs, interplanetary conditions and radio bursts) associated with the two SEP events to understand the intensity difference between them. Different coronal and interplanetary environments of the two events (presence of preceding CME and seed particles ahead of the April 15 event) may explain the intensity difference.  相似文献   

7.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

8.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

9.
A two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. This model has already been used with some success for simulation of some major features of type II shocks and white light coronal transients. In this presentation, we have studied the effects of initial magnetic topology and strength on the formation of MHD shocks. We consider the plasma beta (thermal pressure/magnetic pressure) as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfvén Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. We suggest that this model (computed self-consistently) provides the shock wave and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.  相似文献   

10.
基于多卫星联合观测数据,筛选了2006年12月至2017年10月期间122个太阳高能粒子(SEP)事件及其伴随的日冕物质抛射(CME),分析了SEP事件属性随相对经度的变化、与CME属性之间相关性的经向分布以及与Fe/O比值的关联.研究结果显示:低Fe/O类事件的峰值通量Ip通常更高,伴随CME更大,但通量上升速度较慢...  相似文献   

11.
Advances in modeling gradual solar energetic particle events   总被引:1,自引:0,他引:1  
Solar energetic particles pose one of the most serious hazards to space probes, satellites and astronauts. The most intense and largest solar energetic particle events are closely associated with fast coronal mass ejections able to drive interplanetary shock waves as they propagate through interplanetary space. The simulation of these particle events requires knowledge of how particles and shocks propagate through the interplanetary medium, and how shocks accelerate and inject particles into interplanetary space. Several models have appeared in the literature that attempt to model these energetic particle events. Each model presents its own simplifying assumptions in order to tackle the series of complex phenomena occurring during the development of such events. The accuracy of these models depends upon the approximations used to describe the physical processes involved in the events. We review the current models used to describe gradual solar energetic particle events, their advances and shortcomings, and their possible applications to space weather forecasting.  相似文献   

12.
Using the proton intensity and X-ray flux data from the GOES, combined with the observations of the associated solar eruptions by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board the Solar and Heliospheric Observatory (SOHO), 14 large SEP events occurring in the period 2000 January–2002 April have been studied. It is found that: (1) events with the SEPs increasing shortly after the maximum of their parent flares (<1 h; hereafter prompt events) have rapid and great (up to four orders of magnitude) SEP increments in high-energy channels (> ∼100 MeV); however, for events whose onset of the SEP injection lags the flare maximum for a long time (>3 h; hereafter delayed events), the high-energy SEPs show no obvious enhancements (within one order of magnitude); (2) peak intensity of the prompt events is distinctly larger than that of the delayed events; (3) CMEs associated with the poorly magnetically connected events (source region <W30°) in our survey are all halo CMEs. From these observational differences, we propose a special scenario of the production of the largest SEP events: both CMEs and flares are induced in the same coronal process; high-energy particles accelerated in the reconnection region can escape easily from the open field lines and/or be transported by fast CMEs into interplanetary space, indicating a direct impulsive component in large gradual SEP events. Meanwhile, the broad width of the associated CMEs implies that the CME width is more important in SEP events production than previously considered.  相似文献   

13.
太阳高能粒子(Solar Energetic Particle,SEP)事件是影响地球空间以及深空辐射环境的主要因素之一。“渐进型”太阳高能粒子事件中的高能粒子主要来自于日冕物质抛射(Coronal Mass Ejection,CME)所驱动的激波扩散加速(Diffusive Shock Acceleration,DSA)过程。CME驱动的激波在行星际的传播过程中,其结构不断演化,进而影响到高能粒子的加速过程。本文利用二维太阳高能粒子加速和传播模型,对发生于2014年4月18日的太阳高能粒子事件实例进行了数值模拟。模型考察了黄道面上2 AU的距离以内包含地球所在位置的4个不同点,分别计算了每个点上高能粒子的通量。数值模拟的结果表明:黄道面内不同位置的观察点,与激波波前的磁力线连接不同,从而导致观察点处高能粒子的通量有着显著的差异。该模型的计算结果可以为深空探测计划开展辐射环境研究提供必要的输入。  相似文献   

14.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.   相似文献   

15.
简要阐述了分析模拟的行星际磁流体力学(MHD)激波的局部性质时,采用无厚度局部平面激波这一假设的合理性,说明了在激波未扰动区域(激波上游),物理量在几个小时内的变化很小这一事实,利用平面激波的分析方法,提出了分析模拟的行星际MHD激波的新方法,包括激波位置的确定,上下游状态参数的选择,激波局部参数的计算以及激波的分类,最后应用这种方法对一个二维的MHD模拟结果进行了分析。结果证实了过去文献关于磁流体力学混合激波空间连接和时间演化的链式规则,而且说明位于太阳赤道附近的慢激波和中间激波最终会发展为快激波。  相似文献   

16.
统计分析了自1976-2017年期间记录到的217次SEP(Solar Energetic Particle)事件的日冕足点经度位置,其分布特征符合日冕横向分布的东西效应,同时基于两相传输模型及其Green函数解,对发生在不同日冕足点的四次SEP事件进行了模拟研究.模拟与观测结果表现一致,表明该模型能够较好地模拟发生在...  相似文献   

17.
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes.  相似文献   

18.
The shape of flux profiles of gradual solar energetic particle (SEP) events depends on several not well-understood factors, such as the strength of the associated shock, the relative position of the observer in space with respect to the traveling shock, the existence of a background seed particle population, the interplanetary conditions for particle transport, as well as the particle energy. Here, we focus on two of these factors: the influence of the shock strength and the relative position of the observer. We performed a 3D simulation of the propagation of a coronal/interplanetary CME-driven shock in the framework of ideal MHD modeling. We analyze the passage of this shock by nine spacecraft located at ∼0.4 AU (Mercury’s orbit) and at different longitudes and latitudes. We study the evolution of the plasma conditions in the shock front region magnetically connected to each spacecraft, that is the region of the shock front scanned by the “cobpoint” (Heras et al., 1995), as the shock propagates away from the Sun. Particularly, we discuss the influence of the latitude of the observer on the injection rate of shock-accelerated particles and, hence, on the resulting proton flux profiles to be detected by each spacecraft.  相似文献   

19.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   

20.
Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80% of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号