首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Gravity missions such as the Gravity field and steady-state Ocean Circulation Explorer (GOCE) are equipped with onboard Global Positioning System (GPS) receivers for precise orbit determination (POD), instrument time-tagging, and the extraction of the long wavelength part of the Earth’s gravity field. The very low orbital altitude of the GOCE satellite and the availability of dense 1 s GPS tracking data are ideal characteristics to exploit the contribution of GPS high-low Satellite-to-Satellite Tracking (hl-SST) to gravity field determination. We present gravity field solutions based on about 8 months of GOCE GPS hl-SST data from 2009 and compare the results with those obtained from the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) missions. The very low orbital altitude of GOCE significantly improves gravity field recovery from GPS hl-SST data above degree 20, but not for the degrees below 20, where the quality of the spherical harmonic coefficients remains essentially unchanged. Despite the limited time span of GOCE data used, the gravity field of the Earth can be resolved up to about degree 115 using GPS data only. Empirically determined phase center variations (PCVs) of the GOCE onboard GPS helix antenna are, however, mandatory to achieve this performance.  相似文献   

2.
Temporal and mean gravity field models derived from the twin-satellite, leader–follower mission GRACE have provided a new type of information for Earth sciences. In this contribution, we study the potential of various alternative satellite formations for gravity field determination in the post-GRACE era in a simulation environment. In particular, the effects of spherical harmonic truncation and of temporal aliasing in the processing of gravity products from such future formations are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号