首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurements of aerosol optical properties were carried out during April 2006 to March 2011 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya, using the application of ground-based Multi-wavelength Radiometer (MWR) and space-born Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensors. The average (±standard deviation) values of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient during the entire measurement period were 0.25 ± 0.09, 1.15 ± 0.42 and 0.12 ± 0.06 respectively. About 86% AOD values retrieved from MODIS remote sensor were found within an uncertainty limit (Δτ = ±0.05 ± 0.15τ). In general, the MWR derived AOD values were higher than that of MODIS retrieval with absolute difference ∼0.02. During the entire period of measurement space-born MODIS remote sensor and ground-based MWR observation showed good correspondence with significant correlation coefficient ∼0.78 and root mean square difference ∼0.06. For daily observations the relative difference between these two estimates stood less than 9%. However, satellite-based and ground-based observation showed good correspondence, but further efforts still needed to eliminate systematic errors in the existing MODIS algorithm.  相似文献   

2.
The 20th century temperature anomaly record is reproduced using an energy balance model, with a diffusive deep ocean. The model takes into account all the standard radiative forcings, and in addition the possibility of a non-thermal solar component. The model is parameterized and then optimized to produce the most likely values for the climate parameters and radiative forcings which reproduce the 20th century global warming. We find that the best fit is obtained with a negligible net feedback. We also show that a non-thermal solar component is necessarily present, indicating that the total solar contribution to the 20th century global warming, of ΔTsolar = 0.27 ± 0.07 °C, is much larger than can be expected from variation in the total solar irradiance alone. However, we also find that the largest contribution to the 20th century warming comes from anthropogenic sources, with ΔTman = 0.42 ± 0.11 °C.  相似文献   

3.
Lower-mesospheric inversion layers (MILs) were studied using the temperature profiles observed by TIMED/SABER over Cariri (7.5°S, 36.5°W), Brazil, in 2005. A total 175 MILs were identified with the maximum occurrence in April and October and the minimum in January and July. The lower MIL is located in a height region from 70 to 90 km, with the peak at around 83 ± 4 km with the temperature of 205 ± 5 K, and the thickness of 4–10 km. The results show large amplitudes of MILs during equinoxes and minimum in solstices, with a clear semiannual variation. A general feature of lower MIL in monthly mean profile was observed twice a year, one from February to May, and the other from August to October with a downward shift of the top level. These results suggest that formation and long persistence of MIL is an important factor to investigate propagation of atmospheric gravity waves in the mesosphere-lower thermosphere (MLT) region.  相似文献   

4.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   

5.
Using the physics based model SUPIM and FORMOSAT-3/COSMIC electron density data measured at the long deep solar minimum (2008–2010) we investigate the longitude variations of the north–south asymmetry of the ionosphere at low latitudes (±30° magnetic). The data at around diurnal maximum (12:30–13:30 LT) for magnetically quiet (Ap ? 15) equinoctial conditions (March–April and September–October) are presented for three longitude sectors (a) 60°E–120°E, (b) 60°W–120°W and (c) 15°W–75°W. The sectors (a) and (b) have large displacements of the geomagnetic equator from geographic equator but in opposite hemispheres with small magnetic declination angles; and sector (c) has large declination angle with small displacement of the equators; vertical E × B drift velocities also have differences in the three longitude sectors. SUPIM investigates the importance of the displacement of the equators, magnetic declination angle, and E × B drift on the north–south asymmetry. The data and model qualitatively agree; and indicate that depending on longitudes both the displacement of the equators and declination angle are important in producing the north–south asymmetry though the displacement of the equators seems most effective. This seems to be because it is the displacement of the equators more than the declination angle that produces large north–south difference in the effective magnetic meridional neutral wind velocity, which is the main cause of the ionospheric asymmetry. For the strong control of the neutral wind, east–west electric field has only a small effect on the longitude variation of the ionospheric asymmetry. Though the study is for the long deep solar minimum the conclusions seem valid for all levels of solar activity since the displacement of the equators and declination angle are independent of solar activity.  相似文献   

6.
In this paper, first results from a national Global Positioning System (GPS) based total electron content (TEC) prediction model over South Africa are presented. Data for 10 GPS receiver stations distributed through out the country were used to train a feed forward neural network (NN) over an interval of at most five years. In the NN training, validating and testing processes, five factors which are well known to influence TEC variability namely diurnal variation, seasonal variation, magnetic activity, solar activity and the geographic position of the GPS receivers were included in the NN model. The database consisted of 1-min data and therefore the NN model developed can be used to forecast TEC values 1 min in advance. Results from the NN national model (NM) were compared with hourly TEC values generated by the earlier developed NN single station models (SSMs) at Sutherland (32.38°S, 20.81°E) and Springbok (29.67°S, 17.88°E), to predict TEC variations over the Cape Town (33.95°S, 18.47°E) and Upington (28.41°S, 21.26°E) stations, respectively, during equinoxes and solstices. This revealed that, on average, the NM led to an improvement in TEC prediction accuracy compared to the SSMs for the considered testing periods.  相似文献   

7.
The paper reports the nightglow observations of hydroxyl (8–3), (7–2) and (6–2) Meinel band carried out at a low latitude station Kolhapur (16.8°N, 74.2°E, dip latitude 10.6°N), India during November 2002 to May 2005 with the objective of investigating mesopause dynamics based on derived OH rotational temperature. Overall, 132 nights of quality data were collected using filter-tilting photometer and an all-sky scanning photometer. The mean mesopause temperature observed at Kolhapur is 195 ± 11, 196 ± 9 and 195 ± 7 K from OH (8–3), (7–2) and (6–2) band emissions, respectively, using transition probabilities given by Langhoff et al. [Langhoff, S.R., Werner, H.J., Rosmus, P. Theoretical transition probabilities for the OH Meinel system. Journal of Molecular Spectroscopy 118, 507–529, 1986]. Small wave-like variations (periodicities ∼ few hours) existing over long period variations in derived temperatures are also present. A steady decrease of emission intensities from evening to dawn hours has been observed in approximately 59% of nights. No significant change of nightly mean temperatures has been noted. Furthermore, about 62% of observed nightly mean temperatures lie within one error bar of MSISE-90 model predictions.  相似文献   

8.
TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms (Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ∼5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ∼20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO2 (ion 44 m/z) from microorganisms evolved at temperatures of ∼326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.  相似文献   

9.
Total electron content (TEC) derived from ionosonde data recorded at the station of Korhogo (Lat = 9.33°N, Long = 5.43°W, Dip = 0.67°S) are compared to the International Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The results show that the model represents the diurnal variation of the TEC as well as a solar activity and seasonal dependence. This variation is closer to that of the ionosonde-inferred TEC at high solar activity. However, at low solar activity the IRI overestimates the ionosonde-inferred TEC. The relative deviation ΔTEC is more prominent in the equinoctial seasons during nighttime hours where it is as high as 70%. At daytime hours, the relative deviation is estimated to 0–30%.  相似文献   

10.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

11.
For more than a decade, ionospheric research over South Africa has been carried out using data from ionosondes geographically located at Madimbo (28.38°S, 30.88°E), Grahamstown (33.32°S, 26.50°E), and Louisvale (28.51°S, 21.24°E). The objective has been modelling the bottomside ionospheric characteristics using neural networks. The use of Global Navigation Satellite System (GNSS) data is described as a new technique to monitor the dynamics and variations of the ionosphere over South Africa, with possible future application in high frequency radio communication. For this task, the University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) was applied to compute midday (10:00 UT) GNSS-derived total electron content (GTEC). GTEC values were computed using GNSS data for stations located near ionosondes for the years 2002 and 2005 near solar maximum and minimum, respectively. The GTEC was compared with the midday ionosonde-derived TEC (ITEC) measurements to validate the UNB-IMT results. It was found that the variation trends of GTEC and ITEC over all stations are in good agreement and show a pronounced seasonal variation for the period near solar maximum, with maximum values (∼80 TECU) around autumn and spring equinoxes, and minimum values (∼22 TECU) around winter and summer. Furthermore, the residual ΔTEC = GTEC − ITEC was computed. It was evident that ΔTEC, which is believed to correspond to plasmaspheric electron content, showed a pronounced seasonal variation with maximum values (∼20 TECU) around equinoxes and minimum (∼5 TECU) around winter near solar maximum. The equivalent ionospheric and total slab thicknesses were also computed and comprehensively discussed. The results verified the use of UNB-IMT as one of the tools for future ionospheric TEC research over South Africa.  相似文献   

12.
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop’s mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m−2 s−1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m−2 s−1 and 1150 μmol m−2 s−1. The exposure to the damaging air temperature for 44 h at 690 μmol m−2 s−1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m−2 s−1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m−2 s−1 PAR, respiration rate was higher than photosynthesis rate, but after 3–4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20–30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m−2 s−1 or 1150 μmol m−2 s−1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.  相似文献   

13.
The total electron content (TEC) derived from the global positioning system (GPS) and the F2-layer peak electron density obtained from Digisonde data have been used to study the diurnal, seasonal and solar activity variations of the ionospheric equivalent slab thickness (τ) over three European stations located at Pruhonice (50.0°N, 15.0°E), Ebro (40.8°N, 0.5°E) and El Arenosillo (37.1°N, 353.3°E). The diurnal variation of the τ is characterized by daytime values lower than nighttime ones for all seasons at low solar activity while daytime values larger than nighttime characterizes the diurnal variation for summer at high solar activity. A double peak is noticeable at dusk and at dawn, better expressed for winter at low solar activity. The seasonal variations of τ depend on local time and solar activity, the daytime values of τ increases from winter to summer whereas nighttime values of τ show the opposite. The effect of the solar activity on τ depends on local time and season, there being very sensitive for winter nighttime values of τ. The results of this study are compared with those presented by other authors.  相似文献   

14.
Laboratory characterization of dielectric properties of terrestrial analogues of lunar soil (JSC-1A) and comparison with lunar samples returned from various Apollo missions is made at different as well as normalized bulk density. Here measurements of dielectric constants and losses were made at four microwave frequencies such as 1.7 GHz, 2.5 GHz, 6.6 GHz and 31.6 GHz. Complex permittivity of lunar simulant was measured at temperature ranging from −190 °C to + 200 °C using Wave-Guide cell method. Comparison of permittivity of JSC-1A with Apollo sample also has been done at similar microwave frequencies. The investigations reveal that dielectric constant and loss factor of terrestrial analogues of lunar soil are temperature dependent. As temperature is gradually increased both these parameter (storage factor and loss factor) also gradually increases. These temperatures were chosen because the Moon undergoes at that extremes level of temperature. It is scorching heat at 110 °C during the day and freezing cold at −180 °C during night. The measured value of ε can be useful for designing passive as well as active sensors.  相似文献   

15.
OH(6-2) rotational temperature trends and solar cycle effects are studied. Observations were carried out at the Maimaga station (63.04°N, 129.51°E) for the period August 1999 to March 2013. Measurements were conducted with an infrared spectrograph. Temperatures were determined from intensity ratios in the P branch of the OH band. The monthly average residuals of temperature after the subtraction of the mean seasonal variation were used for a search for the solar component of temperature response. The dependence of temperatures on solar activity has been investigated using the Ottawa 10.7 cm flux as a proxy. A linear regression fitting on residual temperatures yields a solar cycle coefficient of 4.24 ± 1.39 K/100 solar flux units (SFU). The cross-correlation analyses showed that changes of the residual temperature follow changes of solar activity with a quasi-two year delay (25 months). The temperature response at the delay of 25 months reaches 7 K/100 SFU. The possible reason of the observed delay can be an influence of quasi-biennial oscillations (QBO) of the atmosphere on the relation of temperature and solar activity. The value of the temperature trend after the subtraction of seasonal and solar components is not statistically significant.  相似文献   

16.
The electron density and temperature distribution of the equatorial and low latitude ionosphere in the Indian sector has been investigated by simultaneously solving the continuity, momentum and energy balance equations of ion and electron flux along geomagnetic field lines from the Northern to the Southern hemisphere. Model algorithm is presented and results are compared with the electron density and electron temperature measured in situ by Indian SROSS C2 satellite at an altitude of ∼500 km within 31°S–34°N and 75 ± 10°E that covers the Indian sector during a period of low solar activity. Equatorial Ionization Anomaly (EIA) observed in electron density, morning and afternoon enhancements, equatorial trough in electron temperature have been simulated by the model within reasonable limits of accuracy besides reproducing other normal diurnal features of density and temperature.  相似文献   

17.
Radiometric measurements of the thermal radiation originating from the moon’s surface were obtained using an infrared detector operating at wavelengths between 8 and 14 μm. The measurements cover a full moon cycle. The variation of the moon’s temperature with the lunar phase angle was established. The lunar temperatures were 391 ± 2.0 K for the full moon, 240 ± 3.5 K for the first quarter, and 236 ± 3 K for the last quarter. For the rest of the phase angles, the lunar temperature varied between 170 and 380 K. Our results are comparable with those obtained previously at these phase angles. For the new moon phase, the obtained temperature was between 120 and 133 K. With the exception of the new moon phase, our measurements at all the phase angles were consistent with those obtained using Earth-based data and those obtained by the Diviner experiment and the Clementine spacecraft. At the new phase, our measurements were comparable with those obtained from the ground but were significantly higher than those obtained by the Diviner and Clementine data. We attribute this inconsistency to either the calibration curve of our detector, which does not perform well at very low temperatures, or to infrared emission from the atmosphere. A simple linear model to predict the lunar temperature as a function of the phase angle was proposed. The experimental errors that affect the measured temperatures are discussed.  相似文献   

18.
Zonal velocity and temperature daily global reanalysis data of 30 years are used to search seasonally steady planetary disturbances in the middle troposphere (400 hPa) and middle stratosphere (10 hPa). Significant wavenumber 1, 2 and 3 modes are found. Constant phase lines of zonal velocity 1 modes exhibit significant inclination angles with respect to the meridians. The winter hemisphere generally shows a more significant presence of structures. The Northern Hemisphere (NH) exhibits all over the year a larger amount of structures and more intense amplitudes than the Southern Hemisphere (SH). Middle latitudes exhibit the most significant cases and low latitudes the least significant ones. Longitudinally oriented land–sea transitions at ±±65° and −35° latitudes appear to play a significant role for the presence of steady planetary modes. The stratosphere exhibits a much simpler picture than the troposphere. Large scale structures with respectively NE–SW (NH) and NW–SE (SH) tilts in the observed temperature and zonal velocity constant phase lines recall the quasi-stationary Rossby wave trains that favor the poleward transport of angular momentum.  相似文献   

19.
The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (βep > 1) in interplanetary space, using the ratio (βep) of the energetic particle (20 keV to ∼5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990–2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ∼±80°, and a specific important concentration on the low (−25° ? HL < −6°, 6° < HL ? 25°) and median (−45° ? HL < −25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (βep > 1) events are characterized by a very large parameter βep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).  相似文献   

20.
The soil-like substrate (SLS) technique is key for improving the closure of bioregenerative life support system (BLSS) by recycling the inedible biomass of higher plants. In this study, a novel SLS technique (NSLST) was proposed: aerobic fermentations at 35 °C for 1 day, then 60 °C for 6 days, finally 30 °C for 3 days, followed by earthworm treatment for 70 days. Comparing with the original SLS technique (OSLST), its process cycle was 13 days shorter, and the dry weight loss rate (81.1%) was improved by 24.77%. The cellulose and lignin degradation rates were 96.6% and 94.6%. The concentrations of available N, P and K in mature SLS were respectively 776.1 mg/L, 348.0 mg/L and 7943.0 mg/L. Low CH4 and NH3 production was observed, but no accumulation. According to the seed germination test, the SLSs were feasible for plant growth. This investigation will provide a preliminary foundation for BLSS design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号