首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Possible manned flights toward Mars are discussed from the viewpoint of radiation hazard. A standard situation is considered for the fast two times crossing of the Earth radiation belts. The flight to Mars is shown to be practically impossible without a special system of radiation shelters, because of the effect of penetrating galactic and solar radiations which are responsible for almost maximum permissible doses. But even in case there were radiation shelters on board the spacecraft their flights are undesirable in the periods of maximum and minimum solar activity. It would obviously be worthwhile to schedule Martian flights for intervals in between minima and maxima of 11-year cycles of solar activity when primary cosmic rays levels are considerable reduced and flare activity is not yet sufficiently high. It should be mentioned that it would not be easy to select such allowed intervals. Further studies of that aspect are discussed.  相似文献   

2.
The uniqueness of the space radiation field creates specific problems in the evaluation of hazards to men and materials. Comprehensive measurements of all physical parameters are necessary but not sufficient. Particular attention has to be paid to variables like solar flares by applying fast-responding active dosimetry. The assessment of biological consequences poses even more problems. There are no human data for the kinds of particles seen in space and they will presumably never be available. The only reasonable approach is therefore to use the information obtained for other radiations and check their applicability for the space situation. This involves both the study of fundamental processes in ground experiments as well as their verification in space missions. Special emphasis has to be laid on the modification of radiation effects by flight-dynamic factors and microgravity. Radiation protection guidelines for space flights cannot simply be transformed from existent regulations designed for radiation workers on earth but have to be tailored to the specific situation in space.  相似文献   

3.
The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.  相似文献   

4.
Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2-fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed.  相似文献   

5.
All radiations originate in space, and the spectrum of radiations reaching the troposphere is limited only because of their range and absorption by the ozone layer above the atmosphere. Ultraviolet-C and the very heavy ions are therefore produced on earth only artificially, by special lamps and in accelerators. The range of biological effects of the different UV radiations and low and high LET radiations have been studied extensively, yet only recently new facts such as the production of DNA strand breaks by long wave UV light were established, adding to the various points of encounter existing between ionizing and nonionizing radiations. There are some similarities in radiation products, and the resulting effects of insult by radiation on biological systems very often are similar, if not the same. A common phenomenon that exists in all healthy biological cells is the ability to repair damage to DNA and thus either survive or mutate, and although the specific mechanisms of repair are somewhat different, the end result is the same. Recently a mechanism of improved radioprotection was found to involve an effect of certain radioprotective compounds on DNA repair. It is suggested that improved, and nontoxic, modes of protection may be offered by employing such compounds as biological response modifiers and natural substances. Further research is needed and is under way.  相似文献   

6.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.  相似文献   

7.
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderated RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations.  相似文献   

8.
Astronauts are exposed to heavy ions during space missions and heavy ion induced-chromosome damages have been observed in their lymphocytes. This raises the problem of the consequence of longer space flights. Recent studies show that some alterations can appear many cell generations after the initial radiation exposure as a delayed genomic instability. This delayed instability is characterized by the accumulation of cell alterations leading to cell transformation, delayed cell death and mutations. Chromosome instability was shown in vitro in different model systems (Sabatier et al., 1992; Marder and Morgan, 1993, Kadhim et al., 1994 and Holmberg et al., 1993, 1995). All types of radiation used induce a chromosome instability, however, heavy ions cause the most damage. The period of chromosome instability followed by the formation of clones with unbalanced karyotypes seems to be shared by cancer cells. The shortening of telomere sequences leading to the formation of telomere fusions is an important factor in the appearance of this chromosome instability.  相似文献   

9.
It has been known for many years that relationships between absorbed dose and biological effect vary with the type of radiation. In particular, neutrons and alpha particles are more damaging than x or gamma radiations. This applies to a range of biological effects such as cell killing, chromosome aberrations, cell mutation, cell transformation as well as life shortening and cancer induction in animals. The application of this knowledge to devise a scheme for specifying the quality factor (Q) in radiological protection has been the subject of much debate. There are no tumour data in humans from which the quality factor may be derived. The problems of using animal and cell transformation data which are probably the next best choice are discussed. The extensive data base on chromosomal aberrations in human lymphocytes is described and discussed in terms of relevance to deducing quality factors. Particular emphasis is placed on data obtained at low doses and low dose rates.  相似文献   

10.
The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committee 75 of the National Council Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.  相似文献   

11.
Cell-cycle radiation response: role of intracellular factors.   总被引:1,自引:0,他引:1  
We have been studying variations of radiosensitivity and endogenous cellular factors during the course of progression through the human and hamster cell cycle. After exposure to low-LET radiations, the most radiosensitive cell stages are mitosis and the G1/S interface. The increased activity of a specific antioxidant enzyme such as superoxide dismutase in G1-phase, and the variations of endogenous thiols during cell division are thought to be intracellular factors of importance to the radiation survival response. These factors may contribute to modifying the age-dependent yield of lesions or more likely, to the efficiency of the repair processes. These molecular factors have been implicated in our cellular measurements of the larger values for the radiobiological oxygen effect late in the cycle compared to earlier cell ages. Low-LET radiation also delays progression through S phase which may allow more time for repair and hence contribute to radioresistance in late-S-phase. The cytoplasmic and intranuclear milieu of the cell appears to have less significant effects on lesions produced by high-LET radiation compared to those made by low-LET radiation. High-LET radiation fails to slow progression through S phase, and there is much less repair of lesions evident at all cell ages; however, high-LET particles cause a more profound block in G2 phase than that observed after low-LET radiation. Hazards posed by the interaction of damage from sequential doses of radiations of different qualities have been evaluated and are shown to lead to a cell-cycle-dependent enhancement of radiobiological effects. A summary comparison of various cell-cycle-dependent endpoints measured with low- or high-LET radiations is given and includes a discussion of the possible additional effects introduced by microgravity.  相似文献   

12.
The oncongenic effects of radiation on rat respiratory tissues are modulated in vivo within the intact tissue. The degree of modulation as well as the mechanism whereby modulation occurs appears to be different for different types of ionizing radiations. A combined cell culture -in vivo model is described. This model has been developed to evaluate the influence of the host and tissue environment on development and expression of the neoplastic phenotype in irradiated rat trachea. Our data indicates that the potentially oncogenic effects of neutrons, X Rays, and alpha-particles are different depending on the exposure conditions employed and the conditions under which exposed cells are maintained following exposure.  相似文献   

13.
Long-term space missions may increase risks of unfavorable consequences for cosmonauts as a result of radiation effects. This paper presents results of a study of cytogenetic damage in cosmonauts' peripheral blood lymphocytes induced by space radiation. Cultivation of lymphocytes and analysis of chromosomal aberrations were made according to generally accepted methods. It is shown that the yields of dicentrics and centric rings scored after long-term space flights are considerably higher than those scored prior to the flights. An attempt was made to assess individual doses received by cosmonauts. Individual biodosimetry doses received by cosmonauts who showed a reliable increase in the yields of chromosomal-type aberrations after their first flights were estimated to be from 0.02 to 0.28 Gy.  相似文献   

14.
Conventional radiation risk assessments are presently based on the additivity assumption. This assumption states that risks from individual components of a complex radiation field involving many different types of radiation can be added to yield the total risk of the complex radiation field. If the assumption is not correct, the summations and integrations performed to obtain the presently quoted risk estimates are not appropriate. This problem is particularly important in the area of space radiation risk evaluation because of the many different types of high- and low-LET radiation present in the galactic cosmic ray environment. For both low- and high-LET radiations at low enough dose rates, the present convention is that the addivity assumption holds. Mathematically, the total risk, Rtot is assumed to be Rtot = summation (i) Ri where the summation runs over the different types of radiation present. If the total dose (or fluence) from each component is such that the interaction between biological lesions caused by separate single track traversals is negligible within a given cell, it is presently considered to be reasonable to accept the additivity assumption. However, when the exposure is protracted over many cell doubling times (as will be the case for extended missions to the moon or Mars), the possibility exists that radiation effects that depend on multiple cellular events over a long time period, such as is probably the case in radiation-induced carcinogenesis, may not be additive in the above sense and the exposure interval may have to be included in the evaluation procedure. It is shown, however, that "inverse" dose-rate effects are not expected from intermediate LET radiations arising from the galactic cosmic ray environment due to the "sensitive-window-in-the-cell-cycle" hypothesis.  相似文献   

15.
The two components of the space radiation environment, galactic cosmic rays and solar energetic particles, are of special importance for the planning of space missions and designing space vehicles for flights in the inner heliosphere. There is a constant need for developing and updating the models for calculating the fluxes of these particles for purposes of forecasting radiation conditions anticipated for future flights, including missions to the Moon and Mars.  相似文献   

16.
Ciliates represent suitable model systems to study the mechanisms of graviperception and signal transduction as they show clear gravity-induced behavioural responses (gravitaxis and gravikinesis). The cytoplasm seems to act as a "statolith" stimulating mechanosensitive ion channels in the cell membrane. In order to test this hypothesis, electrophysiological studies with Stylonychia mytilus were performed, revealing the proposed changes (de- or hyperpolarization) depending on the cell's spatial orientation. The behaviour of Paramecium and Stylonychia was also analyzed during variable acceleration conditions of parabolic flights (5th German Parabolic Flight Campaign, 2003). The corresponding data confirm the relaxation of the graviresponses in microgravity as well as the existence of thresholds of graviresponses, which are found to be in the range of 0.4xg (gravikinesis) and 0.6xg (gravitaxis).  相似文献   

17.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   

18.
提出了一个基于长短期记忆神经网络的耀斑预报模型,利用过去24 h太阳活动区的磁场变化时序构建样本,通过长短期记忆神经网络对磁场特征时序演化进行分析,预报未来48 h内是否发生≥M级别耀斑事件。使用的数据集为2010年5月到2017年5月所有活动区样本,选取了SDO/HMI SHARP的10个磁场特征参量。在建模过程中通过XGBoost方法选取权重、增益率和覆盖率均较高的6个特征参量作为输入参数。通过测试对比,模型的虚报率和准确率与传统机器学习模型相近,报准率和临界成功指数分别为0.7483和0.7402,优于传统机器学习模型。模型总体效果优于传统机器学习模型。   相似文献   

19.
Plans for the various missions in which men and women are expected to participate during the next 10 years are outlined. Such missions include flights of up to three months duration in low earth orbit as well as possible short excursions to geosynchronous orbit. Research activities are described which cover the full spectrum of physiological and psychological responses to space flight. These activities are shown to contribute to the ongoing Shuttle program and the future Space Station. The paper includes a summary of the major technical thrusts needed to support extended habitation in space.  相似文献   

20.
An extensive model analysis of plastic track detector measurements of high-LET particles on the Space Shuttle has been performed. Three shuttle flights: STS-51F (low-altitude, high-inclination), STS-51J (high-altitude, low-inclination), and STS-61C (low-altitude, low-inclination) are considered. The model includes contributions from trapped protons and galactic cosmic radiation, as well as target secondary particles. Target secondaries, expected to be of importance in thickly shielded space environments, are found to be a significant component of the measured LET (linear energy transfer) spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号