首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
张唯 《推进技术》1980,1(1):1-8
本文介绍了7181端面燃烧固体火箭发动机的性能及结构特点,对端面燃烧方案的选择、发动机的热防护、喷管喉部沉积问题、燃烧面的变化规律及药柱包复、点火问题等主要问题及解决的措施进行了分析讨论,有关分析的结果及所采取的技术措施,对端面燃烧药柱及其它药型的固体火箭发动机设计有一定参考价值。  相似文献   

2.
端面燃烧固体火箭发动机药柱包覆工艺的可靠性研究   总被引:1,自引:0,他引:1  
小推力固体火箭发动机采用自由装填式端面燃烧药柱。通过多次地面热试车,主要对其工艺和质量进行研究和改进,解决了发动机总装中药柱包覆工艺的可靠性问题。本文着重介绍了总装包覆工艺中主要问题和所采取的可靠性措施,并作了简要分析。  相似文献   

3.
通过固体推进剂火焰的激光信号衰减研究   总被引:1,自引:0,他引:1  
张平  徐荣甫 《航空动力学报》1991,6(4):355-358,377
本文讨论波长为 1.0 6 μm的 YAG激光束通过固体推进剂火焰时引起的信号衰减。对固体推进剂药条上方的燃烧火焰和发动机喷出的高速羽焰进行了实验测量。结果表明,YAG激光束在穿越推剂火焰后会引起信号衰减;不同的推进剂引起的衰减量有很大不同;推进剂中铝粉的含量是造成近场羽焰激光信号衰减的主要因素。   相似文献   

4.
在小型固体火箭发动机预研中遇到了严重的喷管喉部沉积问题。本文介绍了在此预研中出现的严重的喉部沉积现象,并简要分析了产生沉积的条件与原因。同时,论述了主要从喷管喉衬材料、结构设计和加工工艺等方面所采取的解决喉部沉积的具体措施。  相似文献   

5.
一种计算气膜冷却效率的新模型   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了等效边界层的概念及“质量喷出率”的参数,并在此基础上提出了一种新的离散孔气膜冷却的掺混模型,解决了冷气喷出后边界层内速度分布波动大及高吹风比时冷气穿透边界层引起的计算困难,计算表明,与以往气膜冷却的掺混模型相比,新的掺混模型能适用于较高吹风比情况下的冷却效率的计算问题。  相似文献   

6.
流-固耦合计算的应用研究   总被引:1,自引:0,他引:1  
为了解决用常规算法求出的流体与固体对流换热系数的不真实性问题,采用了流固耦合计算方法计算固体壁面的温度.其中采用模型模拟湍流流动,用壁面函数法修正处于流场内部的固壁,通过固体和流体双向耦合换热计算,得出了整个流场、温度场包括(固体部分和流体部分)的分布.  相似文献   

7.
利用固体介质快速传导特性进行防热是疏导热防护的一个重要机制,但现有的固体介质在高热流梯度区会出现净热流为负的现象,即流向传导的阻塞效应,它会严重影响高热流区的热量向低热流区的快速传递.本文提出的增加固体介质的导热系数和采用高温热管冷却是两个可以有效解决传导阻塞问题的方案.通过数值模拟评估了这二种方案对解决流向传递的阻塞问题的有效性,给出了一些规律性的结果.  相似文献   

8.
《推进技术》2000,21(1):4-4
为解决固体火箭冲压发动机和固体燃料冲压发动机的流量调节问题,曾经提出过采用固液燃气发生器的方案。近年来,意大利那不勒斯大学航天科学与工程系研究了两种固液燃气发生器方案,用控制固液燃烧来调节进入冲压燃烧室的富燃料燃气流量,从而达到调节固体火箭冲压发动机和固...  相似文献   

9.
固体推进剂裂纹扩展的试验研究   总被引:1,自引:2,他引:1       下载免费PDF全文
吕光珍 《推进技术》1988,9(6):41-47,9,71
固体推进剂裂纹扩展的预测是固体火箭发动机中的一个十分重要的问题,这个问题的解决在很大程度上要依赖于试验研究.本文主要介绍国外在某些典型推进剂的裂纹扩展的试验研究中所采用的推进剂试件、试验方法、试验条件和试验结果.  相似文献   

10.
钱癸融 《推进技术》1987,8(4):44-48,54
通过固体火箭发动机外壳屏蔽衰减分析、点火电路的合理设计和在点火电路中引进低通滤波器,使固体火箭发动机在采用常规电点火器的条件下达到对射频辐射和静电危害防护的基本要求.这种安全设计考虑方法简单,效果明显,是解决固体火箭发动机“双防”问题的一个切实可行的途径.  相似文献   

11.
We discuss the new information that the light elements, particularly Be, have brought to cosmic-ray studies, specifically to the issue of the origin of the seed material of the cosmic rays. The primary nature of the Be evolution strongly suggests that supernova ejecta are the sources of this material. We discuss the superbubble models that emerged as the most likely site for the acceleration of supernova ejecta, and we review the arguments that support the model in which the present epoch cosmic rays have the same origin as those that produce the light elements throughout the evolutionary history of the Galaxy. These arguments include the facts that the bulk of the Galactic supernovae are confined within the interiors of superbubbles, where their ejecta could dominate the metallicity, and that high velocity grains, which condense out of the cooling and expanding ejecta, serve as the injection source for shock acceleration, via sputtering of grain material and scattering of volatile gas atoms. We also review the evolutionary calculations that show that a secondary origin for the evolution of Be as a function of the O abundance is energetically untenable, and unnecessary if cosmic-ray transport is properly taken into account.  相似文献   

12.
The differences between the composition of Galactic cosmic rays and that of the interstellar medium are manifold, and they contain a wealth of information about the varying processes that created them. These differences reveal much about the initial mixing of freshly synthesized matter, the chemistry and differentiation of the interstellar medium, and the mechanisms and environment of ion injection and acceleration. Here we briefly explore these processes and show how they combine to create the peculiar, but potentially universal, composition of the cosmic rays and how measurements of the composition can provide a unique measure of the mixing ratio of the fresh supernova ejecta and the old interstellar medium in this initial phase of interstellar mixing. In particular, we show that the major abundance differences between the cosmic rays and the average interstellar medium can all result from cosmic ray ion injection by sputtering and scattering from fast refractory oxide grains in a mix of fresh supernova ejecta and old interstellar material. Since the bulk of the Galactic supernovae occur in the cores of superbubbles, the bulk of the cosmic rays are accelerated there out of such a mix. We show that the major abundance differences all imply a mixing ratio of the total masses of fresh supernova ejecta and old interstellar material in such cores is roughly 1 to 4. That means that the metallicity of ∼3 times solar, since the ejecta has a metallicity of ∼8 times that of the present interstellar medium.  相似文献   

13.
This report is a brief introduction to some of the vital contributions that the Advanced Composition Explorer Mission will make towards our understanding of the origins of matter and acceleration of particles on a wide range of solar and astrophysical scales. Examples of these contributions are drawn from two broad areas of the space sciences. They are: (1) Dynamical phenomena at the Sun and in the inner heliosphere; and (2) The elemental and isotopic composition of matter in the solar wind, solar accelerated ejecta, galactic cosmic radiation and the anomalous nuclear component in the heliosphere. Some current problems with theories intended to account for these phenomena are discussed, including interpretations of the stable and radioactive isotopes in the galactic cosmic rays. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.  相似文献   

15.
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.  相似文献   

16.
We present an overview of how the principal physical properties of magnetic flux which emerges from the toroidal fields in the tachocline through the turbulent convection zone to the solar surface are linked to solar activity events, emphasizing the effects of magnetic field evolution and interaction with other magnetic structures on the latter. We compare the results of different approaches using various magnetic observables to evaluate the probability of flare and coronal mass ejection (CME) activity and forecast eruptive activity on the short term (i.e. days). Then, after a brief overview of the observed properties of CMEs and their theoretical models, we discuss the ejecta properties and describe some typical magnetic and composition characteristics of magnetic clouds (MCs) and interplanetary CMEs (ICMEs). We review some individual examples to clarify the link between eruptions from the Sun and the properties of the resulting ejecta. The importance of a synthetic approach to solar and interplanetary magnetic fields and activity is emphasized.  相似文献   

17.
Radar Imaging of Mercury   总被引:1,自引:0,他引:1  
Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80–125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands on the Moon.  相似文献   

18.
Thejappa  G.  MacDowall  R.J. 《Space Science Reviews》2001,97(1-4):211-215
We present Ulysses Unified Radio and Plasma Wave (URAP) observations of ion-acoustic waves associated with magnetic clouds and ejecta. The peak intensities of these waves, which usually occur inside CMEs when T e/T i≫1, are not correlated with heliocentric distance or electron to ion temperature ratio inside the CMEs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The Lunar Crater Observation Sensing Satellite (LCROSS), an accompanying payload to the Lunar Reconnaissance Orbiter (LRO) mission (Vondrak et al. 2010), was launched with LRO on 18 June 2009. The principle goal of the LCROSS mission was to shed light on the nature of the materials contained within permanently shadowed lunar craters. These Permanently Shadowed Regions (PSRs) are of considerable interest due to the very low temperatures, <120?K, found within the shadowed regions (Paige et al. 2010a, 2010b) and the possibility of accumulated, cold-trapped volatiles contained therein. Two previous lunar missions, Clementine and Lunar Prospector, have made measurements that indicate the possibility of water ice associated with these PSRs. LCROSS used the spent LRO Earth-lunar transfer rocket stage, an Atlas V Centaur upper stage, as a kinetic impactor, impacting a PSR on 9 October 2009 and throwing ejecta up into sunlight where it was observed. This impactor was guided to its target by a Shepherding Spacecraft (SSC) which also contained a number of instruments that observed the lunar impact. A?campaign of terrestrial ground, Earth orbital and lunar orbital assets were also coordinated to observe the impact and subsequent crater and ejecta blanket. After observing the Centaur impact, the SSC became an impactor itself. The principal measurement goals of the LCROSS mission were to establish the form and concentration of the hydrogen-bearing material observed by Lunar Prospector, characterization of regolith within a PSR (including composition and physical properties), and the characterization of the perturbation to the lunar exosphere caused by the impact itself.  相似文献   

20.
Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号