首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   

2.
We review observations of extended regions of radio emission in clusters; these include diffuse emission in ‘relics’, and the large central regions commonly referred to as ‘halos’. The spectral observations, as well as Faraday rotation measurements of background and cluster radio sources, provide the main evidence for large-scale intracluster magnetic fields and significant densities of relativistic electrons. Implications from these observations on acceleration mechanisms of these electrons are reviewed, including turbulent and shock acceleration, and also the origin of some of the electrons in collisions of relativistic protons by ambient protons in the (thermal) gas. Improved knowledge of non-thermal phenomena in clusters requires more extensive and detailed radio measurements; we briefly review prospects for future observations.  相似文献   

3.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   

4.
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.  相似文献   

5.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   

6.
7.
We present the work of an international team at the International Space Science Institute (ISSI) in Bern that worked together to review the current observational and theoretical status of the non-virialised X-ray emission components in clusters of galaxies. The subject is important for the study of large-scale hierarchical structure formation and to shed light on the “missing baryon” problem. The topics of the team work include thermal emission and absorption from the warm-hot intergalactic medium, non-thermal X-ray emission in clusters of galaxies, physical processes and chemical enrichment of this medium and clusters of galaxies, and the relationship between all these processes. One of the main goals of the team is to write and discuss a series of review papers on this subject. These reviews are intended as introductory text and reference for scientists wishing to work actively in this field. The team consists of sixteen experts in observations, theory and numerical simulations.  相似文献   

8.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   

9.
Yan  Yihua  Huang  Guangli 《Space Science Reviews》2003,107(1-2):111-118
The Bastille-day event in 2000 produced energetic 3B/X5.6 flare with a halo CME, which had great geo-effects consequently. This event has been studied extensively and it is considered that it follows the two-ribbon flare model. The flare/CME event was triggered by an erupting filament and TRACE observations showed formation of giant arcade structures during the flare process. Hard X-ray (HXR) two ribbons revealed for the first time in this flare event (Masuda et al., 2001). The reconstruction of 3-D coronal magnetic fields revealed a magnetic flux rope structure, for the first time, from extrapolation of observed photospheric vector magnetogram data and the flux rope structure was co-spatial with portion of the filament and a UV bright lane (Yan et al., 2001a, 2001b). Here we review some recent work related to the flux rope structure and the HXR two ribbons by comparing their locations and the flux temporal profiles during the flare process so as to understand the energy release and particle accelerations. It is proposed that the rope instability may have triggered the flare event, and reconnection may occur during this process. The drifting pulsation structure in the decimetric frequency range is considered to manifest the rope ejection, or the initial phase of the coronal mass ejection. The HXR two ribbons were distributed along the flux rope and the rope foot points coincide with HXR sources. The energy dissipation from IPS observations occurred within about 100 R is consistent with the estimate for the flux rope system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Palla  F.  Galli  D.  Bachiller  R.  Pérez Gutiérrez  M. 《Space Science Reviews》1998,84(1-2):177-183
We present the results of a study aimed at determining the 12C/13C ratio in two samples of planetary nebulae (PNe) by means of mm-wave observations of 12CO and 13CO. The first group includes six PNe which have been observed in the 3He+ hyperfine transition; the other group consists of 23 nebulae with rich molecular envelopes. We have determined the isotopic ratio in 14 objects and the results indicate a range of values between 9 and 23. In particular, three PNe have ratios well below the value predicted by standard evolutionary models ( 20), indicating that some extra-mixing process has occurred in these stars. We briefly discuss the implications of our results for standard and nonstandard stellar nucleosynthesis.  相似文献   

11.
The galactic cosmic rays arriving near Earth, which include both stable and long-lived nuclides from throughout the periodic table, consist of a mix of stellar nucleosynthesis products accelerated by shocks in the interstellar medium (ISM) and fragmentation products made by high-energy collisions during propagation through the ISM. Through the study of the composition and spectra of a variety of elements and isotopes in this diverse sample, models have been developed for the origin, acceleration, and transport of galactic cosmic rays. We present an overview of the current understanding of these topics emphasizing the insights that have been gained through investigations in the charge and energy ranges Z≲30 and E/M≲1 GeV/nuc, and particularly those using data obtained from the Cosmic Ray Isotope Spectrometer on NASA’s Advanced Composition Explorer mission.  相似文献   

12.
The distribution, kinematics and physical properties of the interstellar matter surrounding the Sun can be inferred from ground-based and UV spectroscopic observations. On a 200 pc scale the local interstellar matter appears inhomogeneous and asymmetric. Although it generally flows towards the lower density region, it is composed of numerous small components a few parsecs in size with slightly different velocities. On a smaller scale the extent and the nature of the Local Cloud which flows over the Sun are discussed based on HST-GHRS observations of nearby stars.  相似文献   

13.
Coronal transient phenomena   总被引:1,自引:0,他引:1  
Solar coronal transients, particularly those caused by flares and eruptive prominences, play a major role in the fields of solar-terrestrial physics and astrophysics. In the former field, coronal transients and their associated interplanetary disturbances are responsible for solar and galactic cosmic ray modulations, as well as planetary magnetospheric and ionospheric disturbances. In the latter field, supernovae remnants are scaled-up manifestations of such disturbances; that is they are stellar, rather than solar, coronal transients. Study of the more accessible solar transients is proving invaluable in both fields and is, therefore, selected for attention in this paper.A series of coronal transient observations is discussed in the spirit of a representative overview following some introductory remarks on the background solar wind. One of these observations is chosen because its interplanetary signature-the shock wave-was detected by two spacecraft at different heliocentric radii. Other cases are chosen because of the extended observations of embedded eruptive prominences. Progress is also being made in the interdisciplinary areas of optical imagery complemented with radio astronomical techniques.Finally, several recent theoretical models and MHD computer simulation studies are summarized. It is suggested that further comparison of specific events with such models promises a rich harvest of physical understanding of the origin, structure and interplanetary progeny of coronal transients.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

14.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   

15.
Prior to the selection of the comet 9P/Tempel 1 as the Deep Impact mission target, the comet was not well observed. From 1999 through the present there has been an intensive world-wide observing campaign designed to obtain mission critical information about the target nucleus, including the nucleus size, albedo, rotation rate, rotation state, phase function, and the development of the dust and gas coma. The specific observing schemes used to obtain this information and the resources needed are presented here. The Deep Impact mission is unique in that part of the mission observations will rely on an Earth-based (ground and orbital) suite of complementary observations of the comet just prior to impact and in the weeks following. While the impact should result in new cometary activity, the actual physical outcome is uncertain, and the Earth-based observations must allow for a wide range of post-impact phenomena. A world-wide coordinated effort for these observations is described.  相似文献   

16.
Because of the strong absorption of extreme ultraviolet radiation by hydrogen and helium, almost every observation with the Extreme Ultraviolet Explorer (EUVE) satellite is affected by the diffuse clouds of neutral gas in the local interstellar medium (LISM). This paper reviews some of the highlights of the EUVE results on the distribution and physical state of the LISM and the implications of these results with respect to the interface of the LISM and the heliosphere. The distribution of sources found with the EUVE all-sky surveys shows an enhancement in absorption toward the galactic center. Individual spectra toward nearby continuum sources provide evidence of a greater ionization of helium than hydrogen in the Local Cloud with an mean ratio of H I/He I of 14.7. The spectral distribution of the EUV stellar radiation field has been measured, which provides a lower limit to local H II and He II densities, but this radiation field alone cannot explain the local helium ionization. A combination of EUVE measurements of H I, He I, and He II columns plus the measurement of the local He I density with interplanetary probes can place constraints on the local values of the H I density outside the heliosphere to lie between 0.15 and 0.34 cm–3 while the H II density ranges between 0.0 and 0.14 cm–3. The thermal pressure (P/k = nT) of the Local Cloud is derived to be between 1700 and 2300 cm–3 K, a factor of 2 to 3 above previous estimates.  相似文献   

17.
Understanding properties of solar energetic particle (SEP) events associated with coronal mass ejections has been identified as a key problem in solar-terrestrial physics. Although recent CME shock acceleration models are highly promising, detailed agreement between theoretical predictions and observations has remained elusive. Recent observations from ACE have shown substantial enrichments in the abundances of 3He and He+ ions which are extremely rare in the thermal solar wind plasma. Consequently, these ions act as tracers of their source material, i.e., 3He ions are flare suprathermals and He+ ions are interstellar pickup ions. The average heavy ion composition also exhibits unsystematic differences when compared with the solar wind values, but correlates significantly with the ambient suprathermal material abundances. Taken together these results provide compelling evidence that CME-driven shocks draw their source material from the ubiquitous but largely unexplored suprathermal tail rather than from the more abundant solar wind peak. However, the suprathermal energy regime has many more contributors and exhibits much larger variability than the solar wind, and as such needs to be investigated more thoroughly. Answers to fundamental new questions regarding the preferred injection of the suprathermal ions, the spatial and temporal dependence of the various sources, and the causes of their variability and their effects on the SEP properties are needed to improve agreement between the simulations and observations.  相似文献   

18.
The properties of interstellar matter at the Sun are regulated by our location with respect to a void in the local matter distribution, known as the Local Bubble. The Local Bubble (LB) is bounded by associations of massive stars and fossil supernovae that have disrupted dense interstellar matter (ISM), driving low density intermediate velocity ISM into the void. The Sun appears to be located in one of these flows of low density material. This nearby interstellar matter, dubbed the Local Fluff, has a bulk velocity of ∼19 km s−1 in the local standard of rest. The flow is coming from the direction of the gas and dust ring formed where the Loop I supernova remnant merges into the LB. Optical polarization data suggest that the local interstellar magnetic field lines are draped over the heliosphere. A longstanding discrepancy between the high thermal pressure of plasma filling the LB and low thermal pressures in the embedded Local Fluff cloudlets is partially mitigated when the ram pressure component parallel to the cloudlet flow direction is included.  相似文献   

19.
Infrared spectroscopy and photometry with ISO covering most of the emission range of the interstellar medium has led to important progress in the understanding of the physics and chemistry of the gas, the nature and evolution of the dust grains and also the coupling between the gas and the grains. We review here the ISO results on the cool and low-excitation regions of the interstellar medium, where T gas≲ 500 K, n H∼ 100–105 cm−3 and the electron density is a few 10−4. JEL codes: D24, L60, 047 Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

20.
Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed “cool core” structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号