首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
红外望远镜红外望远镜接收红外线探测宇宙。红外线是可见光波长较长的红端之外到毫米波射电波之间的电磁辐射光谱。宇宙中所有温度低于3000℃、高于-250℃的物体都发射红外线,因此,使用红外望远镜可以观测到温度从3000℃到-250℃的幼年恒星、褐矮星和行星等天体,以及星际尘埃物质和亚毫米波辐射等。由于红外线的幅度较宽,科学家将它划分为近红外、中红外、远红外和亚毫米波4段。地球大气层中的二氧化碳和水蒸汽,虽然吸收红外线,但宇宙中一些波长较短的近红外和中红外线,以及波长较长的亚毫米波可以到达山顶,因此,美国等国在1979年和1987年分…  相似文献   

2.
太空新航线     
欧洲下一代 红外空间望远镜更名 1800年12月12日,生于德国的英国天文学家赫歇尔发现了红外线。200年后的这一天,来自世界各地的天文学家们在一次研讨会上,把欧洲下一代红外天文望远镜更名为“赫歇尔空间观测台”。该望远镜原名为“远红外与和亚毫米波望远镜(FIRST)”。会议期间,天文学家们还重新确定了“赫歇尔”望远镜的任务,包括了解宇宙中各星系和恒星最初是如何形成的;与它的前任——欧洲“红外空间望远镜”一样,继续在宇宙的空隙中找水;研究海王星轨道外的凯珀带彗星及小行星类天体,等等。目前人  相似文献   

3.
日本文部省的宇宙科学研究所和通产省,现正共同研制用于搭载在从事无人空间实验和观测的自由飞行器(SFU)上的“红外线天体望远镜”。预计1992年第一次发射时搭载它。设计在今年底结束,1988年计划着手工程模型(EM)设计。宇宙所研究的红外线天体望远镜是一个直径20厘米的小型望远镜。灵敏度好,其能力可望相当于地面直径为2米级的红外线天体望远镜。它在太空中的环境与地面截然不同,既不存在吸收红外线的水蒸汽和二  相似文献   

4.
1989年,美国研制的,价值12亿美元的哈勃空间望远镜将进入太空,开始它历时15年的探测使命。哈勃望远镜能使用可见光、近紫外线/红外线(1200~11000埃)进行观测,能为理论宇宙学家、行星际专家等所有的天文学家提供极为丰富的数据。哈勃望远镜的发射将标志天文卫星发展到一个崭新阶段。今后10年,人们将发射各种类型的自由飞行天文卫星,采用各种观测技术,探测宇宙中大量的γ射线,x射线、紫外线、红外线、微波以及无线电波,因此天文科学将会有新的发展。  相似文献   

5.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光.其实,天体还发出许多种我们人类的眼睛看不见的光线.如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等.古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体.近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入.  相似文献   

6.
正斯皮策太空望远镜作为NASA的四大空间望远镜之一,于2003年8月25日发射升空,以观测天体红外波段的方式研究充满无限未知的宇宙,是人类送入太空的最大的红外望远镜。2020年1月30日,斯皮策太空望远镜正式"退役"。它在太空中工作的16年间,拍摄了大量惊为天人的图像,揭示了红外宇宙的美丽景象。斯皮策的命名,是为了纪念天体物理学家莱曼·斯皮策。他在20世纪60年代首先提出把望远镜放入太空以消除地球大气层遮蔽效应的建议,曾直接造就了"哈勃"太空望远镜的诞生。  相似文献   

7.
X射线望远镜简介 X射线在光谱的紫外线以外,波长10纳米到0.01纳米,具有很高的辐射能量。只有温度不超过100万℃的天体才辐射X射线。超新星遗迹、脉冲星和黑洞周围的气体,以及星系中的星团周围的气体,温度高达1亿℃,是强大的X射线源。类星体中心及其喷流也辐射X射线.太阳和类似太阳的其它恒星,只在其大气层中辐射微弱的X射线。它们构成X射线宇宙,需要用X射线望远镜进行探测。  相似文献   

8.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光。其实,天体还发出许多种我们人类的眼睛看不见的光线。如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等。古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体。近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入。  相似文献   

9.
正自1990年哈勃空间望远镜进入太空,至今已经28年了,让我们看看它都取得了哪些惊人的成果。1.宇宙在加速远离我们我们的宇宙在膨胀。大约在一个世纪以前,埃德温·哈勃测量到了我们宇宙的膨胀速率,这个值我们称为哈勃常数。但是在哈勃望远镜发射升空之前,哈勃常数的测量结果十分不精确,我们由此算出的宇宙年龄只能限定在100亿到200亿的范围内。而现在天文学家用哈勃望远镜的数据算出的哈勃系  相似文献   

10.
1983年1月26日,一枚德尔他3910火箭从范登堡基地升上天空,把一颗重一吨多的卫星射入预定轨道——900公里高的近极地轨道,卫星运行周期为103分钟,此卫星便是荷兰红外天文卫星IRAS。 IRAS卫星计划是荷兰、美国和英国合作计划,卫星重1076公斤,其中平台266公斤,主要仪器——红外望远镜810公斤。卫星的主要任务是观测宇宙红外源并为它们编制目录,同时对某些红外源进行详细研究。目前,卫星的一切工作正常。由于星上所带的探测器致冷用液氦的散发速度比预计的慢,因而卫星寿命可能由原计划的200天延长到250天甚至可能达到300天。另外,星  相似文献   

11.
创世大爆炸     
太空科学家声称,他们已经证实了有关宇宙如何开始的创世大爆炸部分理论.他们利用特制望远镜回顾时间.通过望远镜他们能够看到宇宙早期的氦气,很多科学家认为,宇宙是在很久以前在创世大爆炸中产生的,宇宙诞生时产生了一种氦氢混合物,但是他们以前没有证据.这种氦气是利用霍普金斯紫外望远镜发现的,望远镜放在美国“奋进”号宇宙飞船上.约翰霍普金斯大学的天文学家通过研究大约100亿光年以外的一种类星球体  相似文献   

12.
X射线望远镜简介 X射线在光谱的紫外线以外,波长10纳米到0.01纳米,具有很高的辐射能量.只有温度不超过100万℃的天体才辐射X射线.  相似文献   

13.
正近日,科学家利用地表望远镜,绘制了一份宇宙早期的3D图像,揭露了宇宙初期大量星系的模样。兰卡斯特大学的研究人员借助位于夏威夷的昴星团望远镜和位于加纳利群岛的艾萨克·牛顿望远镜开展了此次研究。领导该研究的戴维·索夫拉尔表示:"这些早期星系中恒星的形成过程似乎呈‘爆发式增长’规律,而不像银河系这样,恒星形成的速度较为稳定。此外,其中还有很多年轻恒星,比如今的恒星温度更高、光谱更蓝、所含金属  相似文献   

14.
<正>作为欧空局"宇宙愿景"(Cosmic Vision)计划三大中级任务之一,"欧几里德"(Euclid)探测器,肩负着"暗宇宙"探索的重要使命,将能够观测到宇宙最为黑暗的"角落"。"欧几里得"探测器耗资8.1亿美元,预计于2020年发射,位于日地系的第二拉格朗日点。"欧几里德"探测器重2160千克,将携带1.2米口径的望远镜、1台576百万像素的可见光摄像机和一台近红外摄像机,将花费6年的时间对全天进行扫描,通过测量横跨数十亿光年的星系红外背景,绘制关于宇宙的演变和它的结构图,用以了解宇宙大爆炸以来宇宙的演化,  相似文献   

15.
红外成像仪用于传热实验的研究   总被引:4,自引:0,他引:4  
探讨了将红外成像仪用于传热实验的可能性,分析了几种影响因素:如被测实验件的材料、表面粗糙度,以及用于内流传热实验时需使用的能透过红外线的特殊材料的透射率等对实验结果的影响.分析认为,红外成像仪用于温度测量分析是一种先进的非接触温度测量技术,但必须针对具体情况,确定各个影响参数.   相似文献   

16.
红外观测为我们带来了宇宙中引人入胜的新景观 自从两微米巡天计划(TMSS)扫描70%的天空并探测到大约5700个红外辐射源至今已经有30年了。现代的天文学家已经认识到红外线的的重要性,它能灵敏地探测传统光学波段无法穿透的区域。科学家们正在进行最新的红外探测计划,即全天两微米巡天计划(2MASS),这一计划利用现代探测器的优势,能探测到比TMSS探测的天体暗1亿倍的天体。  相似文献   

17.
黑洞爆发     
近日美国航宇局的科研人员借助钱德拉X射线望远镜,观测到了迄今为止人类所看到的一次最大规模宇宙黑洞大瀑发.  相似文献   

18.
众眼看宇宙     
幽游 《太空探索》2005,(5):F003
红外波段中的微光 这是一幅由艺术家创作的示意图,在红外波段下,这个数十亿光年之外的充满尘埃和亮光的星系看起来是如此的近。类似这样的星系不但距离地球非常遥远,同时也淹没在宇宙的尘埃之中,对于光学波段的望远镜来说,根本不可见。  相似文献   

19.
李龙臣 《太空探索》2001,(11):42-43
暴涨理论预言,宇宙中物质的平均密度与决定宇宙是膨胀还是收缩的临界值(10~(-29)克/厘米3;相当于每立方米空间中有6个氢原子),相差不会超过百万分之一。可是,把现今宇宙中的全部星系和恒星等发光天体加在一起,不足临界值的1%。再加上辐射射电波、红外线和  相似文献   

20.
当代空间红外天文观测技术的发展   总被引:2,自引:0,他引:2  
1 空间红外观测的意义 □□温度低于4000K的天体的辐射主要在红外区,因此是空间红外天文观测的主要对象。其意义体现在以下几个方面: (1) 揭示冷状态的物质 宇宙中从微米大小的尘埃到巨大的行星,它们的温度范围是3~1500K。在这个温度范围内,物体辐射的大多数能量位于红外区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号