首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
日冕冲浪形成的磁流体动力学模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
应用二维时变可压缩磁流体动力学模拟,数值研究了双极-单极磁场中电阻撕裂模不稳定性引起的磁场重联过程,用于模拟日冕冲浪的形成.结果表明,在包含有三区——双极场、电流片和单极场的磁静力平衡初态下,双极场和单极场中的磁力线将会直接重联,磁场演变成鞭状(whip)结构.由弯曲磁力线支撑的等离子体团向上运动到最高位置后,逐渐下落和弥散.等离子体团上升速度可达到0.10vA(vA为双极场中的Alfv'én速度).模拟结果证实日冕冲浪的形成可能与双极-单极场中的磁场重联密切相关.   相似文献   

2.
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed Kuafa satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.  相似文献   

3.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.   相似文献   

4.
Three slowly drifting structures observed during the November 25, 2000 and April 15, 2001 solar flares arepresented. Their relationship to the hard X-ray emission is shown. While the April 15, 2001 X14.4 flare started with the high-frequency drifting structure associated with a plasmoid ejection observed by TRACE in the 171 Å line, the November 25, 2000 event commenced with two drifting structures in two different frequency ranges; the high-frequency one consists of fast positively drifting features with rapid frequency variations of their high-frequency boundary. Due to fast drifting features the slowly drifting structures are interpreted in the flare model with a sequence of fast electron beams accelerated in the current sheet below the ejected plasmoid. Drifting structures in the November 25, 2000 flare are explained by beams injected into the plasmoid and, at the same time, by beams propagating downwards against the evaporation or termination shocks.  相似文献   

5.
Two-dimensional compressible magnetohydrodynamic simulations of current sheet dynamics under the influence of multiple anomalous resistivity areas and slight asymmetries are presented. Following induced tearing and multiple coalescence, a plasmoid is formed and accelerated. Dominant X-points drive the dynamical evolution and lead to transient occurrence of a Petschek-like reconnection geometry. The dependence of current density extrema, plasmoid bulk velocity and maximum reconnection rate on the Lundquist number is examined.  相似文献   

6.
The 2D MHD model of the flare magnetic reconnection shows that a reconnection activity, changes of the magnetic field topology and generation of waves are connected. It is found that after the phase of a quasi-stationary reconnection in the extended current sheet above the flare arcade the tearing mode instability produces the plasmoids which then can interact and generate MHD waves. Results of particle-in-cell simulations of the tearing processes, which accelerate electrons, are mentioned. Then all these processes are discussed from the point of view of possible radio emissions. While shocks can contribute to the type II radio burst, the superthermal electrons trapped in plasmoids can generate so called drifting pulsating structures. Furthermore, regions with the MHD turbulence may manifest themselves as the lace or dm-spike bursts.  相似文献   

7.
The change of helicity for magnetic reconnection is calculated with the help of a kinematic model. The results confirm the approximate conservation of magnetic helicity for reconnection in an almost ideal plasma as e. g. the solar corona. Different examples show the contributions of twist or linkage of flux tubes to the total helicity change in the process. However, they also show that helicity may be produced for reconnection processes in more extended non-ideal regions which is due to new magnetic flux linked to the reconnected flux tubes.  相似文献   

8.
Observations of the Sun show that magnetic flux is emerging through the surface in small scales in rather copious amounts. In order to maintain a steady state field strength, this flux must either be locally dissipated or explelled or both. We believe that magnetic reconnection and subsequent flux explusion is the most effective manner in which to achieve this. If new flux emerges into an already preexisting coronal magnetic field, the ambient field must be pushed aside to allow room for the new flux. If the ambient field strength decreases outward with radial distance as is expected for all stars, it may pinch off the emerging flux through magnetic reconnection and expell it outward. The net force on an isolated diamagnetic plasmoid produced by this process is shown to assume a particularly simple form, depending only on the plasmoid's mass, its temperature, and the radial gradient of the logarithm of the undisturbed magnetic pressure. If a sufficient number of these magnetic elements are produced per unit time, this process translates to a net outward magnetic force on the coronal plasma which can be greater that the gas pressure force. Thus, a stellar wind can be produced by magnetic forces alone without the need for a high coronal gas pressure — a mechanism which could be effective in explaining why stars, such as the late-type giants, which possess cool coronae nevertheless exhibit vigorous coronal expansions.  相似文献   

9.
We have performed the analysis of the magnetic topology of active region NOAA 10486 before two large flares occurring on October 26 and 28, 2003. The 3D extrapolation of the photospheric magnetic field shows the existence of magnetic null points when using two different methods. We use TRACE 1600 Å and 195 Å brightenings as tracers of the energy release due to magnetic reconnections. We conclude on the three following points:
1. The small events observed before the flares are related to low lying null points. They are long lasting and associated with low energy release. They are not triggering the large flares.

2. On October 26, a high altitude null point is found. We look for bright patches that could correspond to the signatures of coronal reconnection at the null point in TRACE 1600 Å images. However, such bright patches are not observed before the main flare, they are only observed after it.

3. On October 28, four ribbons are observed in TRACE images before the X17 flare. We interpret them as due to a magnetic breakout reconnection in a quadrupolar configuration. There is no magnetic null point related to these four ribbons, and this reconnection rather occurs at quasi-separatrix layers (QSLs).

We conclude that the existence of a null point in the corona is neither a sufficient nor a necessary condition to give rise to large flares.  相似文献   


10.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

11.
A dynamical model of magnetic reconnection in solar two-ribbon flares is applied to EXOSAT observations of a long-decay flare from the star EQ Peg. We show that the model is able of reproducing correctly the energy release rate and temporal evolution of the decay phase of the observed flare. We conclude that the flare was the stellar counterpart of solar two-ribbon flares and we derive the physical parameters of the emitting region.  相似文献   

12.
We discuss the kinetic processes of plasma thermalization, acceleration, and mixing in magnetic reconnection. Non-Maxwellian, gyrotropic ion distribution functions such as anisotropic ion beams in the plasma sheet boundary layer (PSBL) and counter-streaming ions (CSIs) in the plasma sheet are often observed during a plasmoid passage of a satellite in the Earth's magnetotail. Non-gyrotropic ion distribution functions are also sometimes observed just after the passage of the plasmoid. We study the behavior of non-Maxwellian ion distribution functions observed by GEOTAIL. We further study theoretically the ion dynamics by using a particle-in-cell simulation, and discuss the role of non-Maxwellian distribution functions in magnetic reconnection.  相似文献   

13.
Magnetic reconnection is one of the most fundamental processes in the magnetosphere. We present here a simple method to determine the essential parameters of reconnection such as reconnected flux and location of the reconnection site out of single spacecraft data via remote sensing. On the basis of a time-dependent reconnection model, the dependence of the reconnected flux on the magnetic field z-component Bz is shown. The integral of Bz over time is proportional to the reconnected flux and depends on the distance between the reconnection site and the actual position where Bz is measured. This distance can be estimated from analysis of magnetic field Bz data. We apply our method to Cluster measurements in the Earth’s magnetotail.  相似文献   

14.
The 16 August 1999 EUV brightenings are numerically simulated by a third-order upwind compact scheme, basing on the TRACE observation. The present simulation can give a possible explanation to its formation and evolution. The numerical results show that the initial reconnection jets at around X-point are responsible for the occurrence of EUV brightening. The strong and superposed ejections caused by the first and second coalescence of magnetic islands are possibly related to the lifted material which initially appeared as absorption features and Later EUV-emitting structures respectively. The bi-directional reconnection jets may correspond to the lifted material that either continued to move upward along the apparently open field lines or fell down to the surface.   相似文献   

15.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

16.
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow.  相似文献   

17.
The excitation (flares, ejections, heating, …) of the corona can be understood in terms of the dynamics of the confectively driven magnetized plasma. In particular, anomalous ohmic heating may be a consequence of the formation and rapid dissipation of small-scale magnetic fields in the corona. We have performed numerical simulations of the loop heating model proposed by Parker (1972, 1994), and have studied its dynamics and global power balance in order to assess its viability as a coronal heating candidate, with promising results. Our results suggest the following view of the small-scale dynamics of coronal loops. First of all, photospheric granular motions quasi-statically twist the magnetic field of the corona in a random-walk fashion. In topologically closed structures, the perpendicular magnetic energy increases, causing magnetic shear to build up at the quasi-separatrices of the resulting close-packed magnetic flux tubes. At some point, the boundary driving causes this stressed configuration to cross the threshold of an ideal time-scale MHD instability (possibly magnetic coalescence or resistive tearing) or a point of nonequilibrium and the field lines pinch toward a small-scale sheared configuration. It then becomes energetically favorable for dynamic reconnection to occur, producing narrow current sheets and an Ohmic heating rate sufficient to balance the input Poynting flux.  相似文献   

18.
We examined the relation between the evolutions of the H flare ribbons and the released magnetic energiesat a solar flare which occurred on 2001 April 10. This is the first study to evaluate the released energy quantitatively, based on the magnetic reconnection model, and by using the data obtained with the multi wavelength observation. We measured the, photospheric magnetic field strengths and the separation speeds of the fronts of the H flare ribbon, and compared them the nonthermal behaviors observed in HXRs and microwaves. Those nonthermal radiation sources tell us when and where large energy releases occur. Then, by using the photospheric and chromospheric features, we estimated the released magnetic energy at the flare. The estimated energy release rates at the H kernels associated with the HXR sources are locally large enough to explain the difference between the spatial distribution the H kernels and the HXR sources. Their temporal evolution of the energy release rates also shows peaks corresponding to HXR bursts.  相似文献   

19.
We present observational results and their physical implications garnered from the deliberations of the FBS Magnetic Shear Study Group on magnetic field shear in relation to flares. The observed character of magnetic shear and its involvement in the buildup and release of flare energy are reviewed and illustrated with emphasis on recent results from the Marshall Space Flight Center vector magnetograph. It is pointed out that the magnetic field in active regions can become sheared by several processes, including shear flow in the photosphere, flux emergence, magnetic reconnection, and flux submergence. Modeling studies of the buildup of stored magnetic energy by shearing are reported which show ample energy storage for flares. Observational evidence is presented that flares are triggered when the field shear reaches a critical degree, in qualitative agreement with some theoretical analyses of sheared force-free fields. Finally, a scenario is outlined for the class of flares resulting from large-scale magnetic shear; the overall instability driving the energy release results from positive feedback between reconnection and eruption of the sheared field.  相似文献   

20.
对澳大利亚Culgoora天文台射电频谱仪在太阳活动第23周峰年期间记录到的米波Ⅲ型爆发(20~420 MHz),与日冕物质抛射(CME)、Hα耀斑及相关事件进行了统计分析,发现米波Ⅲ型爆发与CME的关系没有Ⅱ、Ⅳ型爆发与CME的关系密切;米波Ⅲ型爆发发生的时间在CME之前25~30 min最多;72%的CME事件伴随长寿命的Hα耀斑.从这些观测特征出发,对米波Ⅲ型爆发、CME和Hα耀斑进行了定性的解释.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号