首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用TCAD软件,构建了特征尺寸为0.18μm的三维器件模型,采用器件与电路联合仿真的方法,对重离子在静态随机存储器(SRAM)中引起的单粒子翻转(SEU)效应进行了模拟,分析了SRAM单粒子翻转的机理。仿真了各种阻值的反馈电阻对SRAM抗SEU的效果,确定了SRAM单元抗SEU反馈电阻的阻值。仿真结果表明,搭建的仿真平台可为加固型SRAM电路的研制提供仿真平台和设计依据。  相似文献   

2.
SRAM FPGA电离辐射效应试验研究   总被引:1,自引:0,他引:1  
针对SRAM FPGA空间应用日益增多,以100万门SRAM FPGA为样品,进行了单粒子效应和电离总剂量效应辐照试验。单粒子试验结果是:试验用粒子最小LET为1.66 MeV·cm2/mg,出现SEU(单粒子翻转);LET为4.17 MeV·cm2/mg,出现SEFI(单粒子功能中断),通过重新配置,样品功能恢复正常;LET在1.66~64.8 MeV?cm2/mg范围内,未出现SEL(单粒子锁定);试验发现,随SEU数量的累积,样品功耗电流会随之增加,对样品进行重新配置,电流恢复正常。电离总剂量辐照试验结果是:辐照总剂量75 krad(Si)时,2只样品功能正常,功耗电流未见明显变化。辐照到87 krad(Si)时,样品出现功能失效。试验表明SRAM FPGA属于SEU敏感的器件,且存在SEFI。SEU和SEFI会破坏器件功能,导致系统故障。空间应用SRAM FPGA必须进行抗单粒子加固设计,推荐的加固方法是三模冗余(TMR)配合定时重新配置(Scrubbing)。关键部位如控制系统慎用SRAM FPGA。  相似文献   

3.
针对宇航用大容量SRAM器件抗单粒子效应性能的试验评估需要,利用重离子加速器对抗辐射加固32 M Bulk CMOS工艺SRAM和16 M SOI CMOS工艺SRAM进行了单粒子效应模拟试验研究,获得SRAM器件单粒子效应特性并进行在轨翻转率预估;对单粒子翻转试验中重离子射程的影响,不同SEU类型的翻转截面差异,在轨翻转率预估的有关因素等进行了分析讨论。结果表明,这2款抗辐射加固SRAM器件都达到了较高的抗单粒子效应性能指标。试验结果可以为SRAM器件的单粒子效应试验评估提供参考。  相似文献   

4.
CMOS SRAM器件单粒子锁定敏感区的脉冲激光定位试验研究   总被引:1,自引:0,他引:1  
利用脉冲激光定位成像系统,对CMOS SRAM K6R4016V1D器件开展了单粒子锁定效应(SEL)敏感区定位的试验研究。试验结果表明:该器件的单粒子锁定效应敏感区呈周期性分布,而对于单一的SEL敏感区,其长度和宽度相差很大。在此基础上进一步讨论了SEL敏感区的分布对测试方法和空间SEL发生频次计算的影响。  相似文献   

5.
卫星抗辐射加固技术   总被引:5,自引:0,他引:5  
分析了FY-1C卫星运行轨道空间辐射环境,介绍了整星、单机、器件抗辐射要求。卫星研制过程中,对各单抗和系统在技术设计、元器件设计、软件编制等的抗辐射加固设计要求。特别对有CPU和存储器的单粒子翻转效应(SEU)和闩锁效应(SEL)试验。仪器和系统的软件均用故障注入的方法完成了抗SEU的仿真试验。  相似文献   

6.
针对空间用SRAM型FPGA器件抗单粒子效应性能全面测试评估的要求,研究内部不同资源电路结构的单粒子效应敏感性及测试方法,利用重离子加速器开展抗辐射加固SRAM型FPGA单粒子效应模拟辐照试验,对配置存储器、块存储器、触发器等敏感单元的单粒子翻转、单粒子功能中断、单粒子锁定特性进行研究。试验结果表明,所提出测试方法能有效地覆盖测试SRAM型FPGA单粒子效应敏感资源,所测试抗辐射加固SRAM型FPGA器件具有良好的抗单粒子锁定性能,但对单粒子翻转和单粒子功能中断非常敏感,静态测试模式下对单粒子翻转更为敏感。有关测试方法和结果可以为SRAM型FPGA的单粒子效应评估及防护提供参考。  相似文献   

7.
SRAM型FPGA内嵌CPU软核开发成本低、开发过程灵活,可以替代独立的DSP或CPU器件,执行星载设备核心控制功能。但这种内嵌CPU软核容易受到空间单粒子翻转效应(SEU)的影响。SEU可能导致内嵌CPU软核的硬件或软件故障,对其在轨应用影响较大。提出一种针对SRAM型FPGA内嵌CPU软核的SEU防护方案,通过"三模冗余+动态刷新"对CPU软核的硬件结构进行防护,通过冗余自刷新模块替换对CPU软核的存储区进行防护。该方案经过了软件注错验证及粒子辐照试验验证,证明其能够有效提高SRAM型FPGA内嵌CPU软核对SEU的容错能力。  相似文献   

8.
为提升SRAM型FPGA电路块存储器和配置存储器抗单粒子翻转性能,本文提出一种脉冲屏蔽SRAM单元结构。该结构通过在标准的六管单元中加入延迟结构,增大单元对单粒子事件响应时间,实现对粒子入射产生的脉冲电流屏蔽作用。以64k SRAM作为验证电路进行单粒子翻转性能对比,电路的抗单粒子翻转阈值由采用标准六管单元的抗单粒子翻转阈值大于25 MeV·cm 2·mg -1 提升至大于45 MeV·cm 2·mg -1 ,加固单元面积较标准六管单元增大约21.3%。30万门级抗辐照FPGA电路通过脉冲屏蔽单元结合抗辐照SOI工艺实现,其抗辐照指标分别为:抗单粒子翻转阈值大于37.3 MeV·cm 2·mg -1 ,抗单粒子锁定阈值大于99.8 MeV·cm 2·mg -1 ,抗电离总剂量能力大于200 krad(Si)。  相似文献   

9.
文章根据NOAA卫星和GOES卫星的测量数据,对太阳质子事件期间地球同步轨道(GEO)和太阳同步轨道(SSO)的质子辐射情况进行考察。采用Bendel双参数模型对GEO和SSO由质子引起的器件单粒子翻转率进行估算,并分析了影响翻转率的因素。在器件敏感度一定的情况下,单粒子翻转率与大于能量阈值的质子总通量以及质子能谱硬度呈正相关。SSO与GEO的质子辐射及单粒子翻转预测对比研究结果表明:由太阳质子事件引起的SSO质子能谱比GEO的要“软”。太阳质子事件对SSO卫星的影响与对GEO卫星的影响之间存在相关性。两轨道上DRAM型的D424100V器件和SRAM型的HM6516器件的翻转率比值接近,SSO翻转率约为GEO的13%~22%,而双极型93L422器件翻转率比值则在26%~57%之间。通过对比SSO与GEO翻转率的比值和两轨道辐射程度的比值发现,不同的器件对能谱硬度的反应各异,原因是每种器件产生SEU的能量阈值不同。  相似文献   

10.
采用SRAM工艺的FPGA因其性能优异,在空间领域的应用受到重视;但是在空间环境中,SRAM型FPGA易受单粒子翻转的影响而导致逻辑故障或功能中断。文章提出对该类芯片的配置逻辑部分采用回读比较后刷新、对其BRAM部分采用通用自纠错宏的抗单粒子翻转(SEU)设计方案,在牺牲一定的器件性能的情况下,能达到较好的抗辐射效果。  相似文献   

11.
针对65 nm体硅CMOS工艺触发器链,利用脉冲激光研究了敏感节点间距、加固结构和测试数据类型等因素对电路的单粒子翻转效应(SEU)敏感度的影响.研究表明:敏感节点间距增大可有效提高双互锁存(dual interlocked storage cell,DICE)结构触发器链的抗SEU性能,但当敏感节点间距较大(如>4....  相似文献   

12.
空间单粒子翻转(SEU)对于在轨卫星寿命和可靠性有着较大的影响,然而,针对低轨互联网卫星1000~1200 km的典型极地轨道空间SEU,目前缺少在轨试验验证结果。文章对某型号的两颗卫星在轨7个月以来的SEU事件记录数据进行处理和分析,给出互联网卫星1050~1425 km不同轨道高度上的SEU事件发生的频度、区域及概率,结合在轨运行情况提出互联网卫星在轨单粒子翻转的软硬件防护设计措施。数据表明,在当前低轨互联网卫星的典型轨道高度上,对于抗单粒子翻转阈值为0.7 MeV·cm2/mg的低阈值SRAM器件,在轨SEU事件大部分发生在SAA区域,发生概率约为7.63×10-7 bit-1·d-1。结合卫星在轨空间防护设计经验,通过加强元器件选用控制、软硬件冗余设计、关键器件限流等措施,可以有效提高低轨互联网卫星的在轨可靠性。  相似文献   

13.
黄影  张春元 《航天控制》2006,24(6):40-45
针对空间辐射环境下的单粒子翻转效应,结合COTS器件的特点,介绍了一种空间环境下COTS计算机的嵌入式解决方案,并结合应用的要求给出了抗SEU容错体系结构的设计方案—基于COTS器件的多级容错结构。文章分别从芯片级、模块级和系统级3个容错粒度展现了空间计算机容错体系结构的设计思路,最后还利用了混联模型分析并计算了系统的可靠度指标。  相似文献   

14.
SRAM型FPGA的单粒子效应及TMR设计加固   总被引:1,自引:0,他引:1  
宇宙空间中存在多种高能粒子,其辐射效应会严重威胁航天器中现场可编程门阵列(FieldProgrammable Gate Array,FPGA)器件工作的可靠性。文章研究了静态随机存储器型(Static Random AccessMemory,SRAM)FPGA中的单粒子翻转效应。理论计算表明,采用三模冗余(Triple Module Redundancy,TMR)设计方法可以有效缓解FPGA中的单粒子翻转问题。针对传统TMR设计方法的不足,提出了一种改进的TMR设计架构,并将该架构应用于某星载关键控制电路的设计中。文中的研究成果对SRAM型FPGA的空间应用有一定参考作用。  相似文献   

15.
国产某型号导航SoC器件采用55nm商用工艺生产。针对该型器件的辐射敏感性分析表明其易受单粒子效应影响,为此利用重离子加速器完成空间单粒子辐照的地面模拟试验,考查器件的单粒子效应,为其空间应用提供数据支撑。结果表明:器件抗单粒子锁定的LET阈值大于81.4 MeV·cm2/mg,满足空间应用指标要求;但器件对单粒子翻转和单粒子功能中断较为敏感。利用ForeCAST软件计算得到GEO、Adams 90%最坏环境模型,3 mm(Al)屏蔽条件下器件的DFT模式单粒子翻转率为6.80×10-8d-1·bit-1,SRAM模式单粒子翻转率为5.61×10-11d-1·bit-1,单粒子功能中断率为5.24×10-5d-1,在轨应用时需要采取相应的防护措施。  相似文献   

16.
文章通过研究某国产数字信号处理器(XX-DSP)体系结构、DSP地面测试方法和空间环境对DSP的典型影响,设计了一种针对国产DSP类器件的在轨验证方法。验证系统硬件平台采用1∶1热备份设计,提高系统可靠性;验证方法借鉴当前地面应用广泛的功能测试方法,覆盖DSP的全部功能单元;另外考虑空间环境中的电离总剂量效应和单粒子效应影响,对DSP的片内RAM和内部寄存器的单粒子翻转(SEU)进行统计,并最终给出单粒子翻转率,同时检测DSP单粒子锁定(SEL);最后通过运行DSP典型应用算法——有限长单位冲激响应(FIR)滤波算法验证DSP的系统功能,全面考核国产DSP的空间环境适应性。  相似文献   

17.
以40 nm和65 nm CMOS工艺SRAM为样品,进行质子辐照单粒子效应试验研究,以建立空间质子引起单粒子效应的地面等效评估试验方法.分别进行低能质子直接电离、高能质子核反应和重离子直接电离引起的单粒子翻转试验;根据获得的试验数据,分析讨论给出空间质子引起半导体器件单粒子效应的地面等效评估试验方法:对低能质子直接电...  相似文献   

18.
在空间环境中,嵌入式SRAM 易受高能粒子的作用发生单粒子软错误,针对这一现象,文章研究了深亚微米工艺下嵌入式SRAM 的单粒子软错误加固技术,提出了版图级、电路级与系统级加固技术相结合的SRAM 加固方法以实现减小硬件开销、提高抗单粒子软错误的能力。并基于该方法设计了电路级与TMR(三模冗余)系统级加固相结合、电路级与EDAC(纠检错码)系统级加固相结合和只做电路级加固的3 种测试芯片。在兰州近物所使用Kr 粒子对所设计的测试芯片进行单粒子软错误实验,实验结果表明,系统级加固的SRAM 抗单粒子软错误能力与写入频率有关,其中当SRAM 的写入频率小于0. 1s 时,较只做电路级加固的芯片,系统级和电路级加固相结合的SRAM 可实现翻转bit 数降低2 个数量级,从而大大优化了SRAM 抗单粒子软错误的性能。并根据实验数据量化了加固措施、写频率和SRAM 单粒子翻转截面之间的关系,以指导在抗辐照ASIC(专用集成电路)设计中同时兼顾资源开销和可靠性的SRAM 加固方案的选择。  相似文献   

19.
文章利用重离子地面模拟源,采用图像分析方法,开展了CCD视频信号处理器件单粒子效应系统性试验与测试研究。首先介绍了器件单粒子效应(SEE)试验方案、试验测试系统组成;然后通过试验研究获得了器件单粒子翻转(SEU)和单粒子锁定(SEL)特征参数,评估了视频信号处理器件单粒子翻转、单粒子锁定效应对系统成像性能的影响。试验结果表明:地面试验测试系统可有效实时判断、统计该器件单粒子效应发生事件,并能直观实时观察到单粒子事件发生时遥感图像的变化;视频信号处理器件随着重离子LET值增大,其单粒子截面呈增加趋势,器件对重离子诱发的单粒子效应比较敏感;单粒子锁定对光学遥感器成像任务的危害程度高于单粒子翻转。最后给出了采取单粒子锁定防护建议。  相似文献   

20.
SRAM型存储器空间应用通常采取纠一检二(SEC-DED)的方法,克服空间单粒子翻转(SEU)对其产生的影响。随着SRAM型存储器工艺尺寸的减小、核心电压的降低,空间高能粒子容易引起存储器单个基本字多位翻转(SWMU),导致SEC-DED防护方法失效。在研究辐射效应引起的SRAM型存储器多位翻转模式特点的基础上,提出一种基于改进型(14,8)循环码的系统级纠正一位随机错和两位、三位突发错同时检测随机两位错(SEC-DED-TAEC)的系统级容错方法。基于该方法的存储器系统容错设计具有实现简单、实时性高的特点,已成功应用于某型号空间自寻的信息处理系统。仿真试验及实际应用表明,该方法可以有效防护SRAM型存储器件SWMU错误,有效提高了空间信息处理系统可靠性,可以为其它空间电子系统设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号