首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Optical chemical sensors have been developed for monitoring several parameters relevant to plant growth systems. These sensors utilize porous polymer and porous glass as the sensing element, and optical fiber input/output lines connected to a custom optoelectronic interface. Present in the sensing element are immobilized colorimetric indicators, which react with the analyte to be sensed. This reaction results in a change in the optical properties of the sensor. These sensors are particularly suited to in-situ monitoring of nutrient solution parameters and atmospheric trace contaminants in life support and plant growth systems. Sensors for monitoring pH, ammonia, and ethylene will be discussed.  相似文献   

2.
Optical oxygen sensors are mainly based on the principle of luminescence quenching. In contrast to arready existing intensity-based systems, the measurement of the luminescence lifetime provides certain advantages, such as insensitivity to photobleaching or leaching of the dye, or changes in the intensity of excitation light. This facilitates the use of simple optical systems or optical fibres. A new family of oxygen-sensitive dyes, the porphyrin-ketones, has been introduced, which exhibits favorable spectral properties and decay times in the order of tens and hundreds of microseconds. This allows the use of simple optoelectronic circuitry and low-cost processing electronics. An optical oxygen sensor module has been developed with the dimensions of only 120 x 60 x 30 mm. The prototype is based on the measurement of the decay time of the luminophore by measuring the phase shift between the square-wave excitation and the detected square-wave of the emission coming from the sensor. The instrument is based on semiconductor devices (light-emitting diodes, photodiodes) and may be used for the detection of oxygen in gaseous or liquid samples. The measurement range of the device is from 0 to 200 hPa oxygen partial pressure with a resolution of < 1 hPa over the whole measurement range. The overall measurement accuracy of < +/- 1 hPa has been obtained for periods of 24 h of continuous measurement in a thermostatted environment. The sensor response times t90 are typically < 1 s for gases and 0.5 to 5 min for liquid samples.  相似文献   

3.
天基微小空间碎片探测研究   总被引:6,自引:0,他引:6  
随着空间碎片数量的不断增多,天基微小空间碎片探测已经成为一个热点.首先介绍了空间碎片在低地球轨道上的分布情况以及它对于航天器的危害,然后介绍了国外微小碎片探测器的基本情况,并在这些探测结果的基础上提出了一个探测器方案.这种探测器的传感器采用了新型的压电材料聚偏二氟乙稀(PVDF),使用了飞行时间法(TOF)准确测定空间碎片的飞行速度,以及快脉冲分析系统分析碎片的质量.  相似文献   

4.
5.
光纤电流互感器是一类存在模型参数不确定性的系统,为提高系统测量精度,利用鲁棒控制理论提出了系统的鲁棒H控制器设计方案.分析系统的检测原理并建立数学模型.针对光纤电流互感器系统给出控制器设计指标,使得闭环系统渐近稳定且提高系统噪声抑制能力.理论证明控制器设计方案满足设计指标的要求,并利用线性矩阵不等式的可行解给出了控制器的构造方法.最后通过计算机仿真和实验结果证明了此控制器设计方案的可行性和有效性.  相似文献   

6.
During the past 10 years, the main part of CELSS studies has concerned the exploration of limits of plant productivity. Very high yields were obtained in continuous and high lighting, without reaching any limit. Concepts of mineral nutrition were renewed. CELSS activities now induce a development in the techniques of image processing applied to plants in order to follow the growth, to detect stresses or diseases or to pilot harvesting robots. Notable efforts concern the development of sensors, the study of trace contaminants and the micro-organisms monitoring. In parallel, several instruments for plant culture in closed Systems were developed. The advantages of closure are emphasised in comparison with open flow systems. The concept of Artificial Ecosystems developed for space research is more and more taken into account by the scientific community. It is considered as a new tool to study basic and applied problems related to ecology and not especially concerned with space research.  相似文献   

7.
针对使用两个星敏感器进行姿态测量的三轴稳定控制系统,利用星敏感器输出值与陀螺输出值的解析冗余关系,通过设计两个滤波器实现对不同星敏感器的故障隔离.考虑到陀螺测量噪声以乘性噪声的形式出现在姿态运动学方程中,利用陀螺输出测量值和目标星敏感器的测量值,采用线性最小均方差估计器得到包含目标星敏感器故障信息的残差; 以无故障情况下残差的统计方差为基础得到阈值,通过检验残差评价值是否超过相应的阈值,实现对目标星敏感器故障的检测; 分别将两个星敏感器作为目标星敏感器,综合两个故障检测结果隔离故障.对星敏感器出现测量偏差和精度逐渐下降两种故障的仿真验证了该方法的有效性.  相似文献   

8.
Accurate measurement of the leaf to air temperature gradient is crucial for the determination of stomatal conductance and other plant responses in both single leaves and in plant canopies. This gradient is often less than 1 degree C, which means that leaf temperature must be known to within about +/- 0.1 degree C. This is a challenging task, but new, miniature infra-red transducers from Exergen Corporation (Newton, MA) and Everest Interscience (Tucson, AZ) can be modified and calibrated to achieve this accuracy. The sensors must be modified to add thermal mass and the Exergen sensor requires a measurement of sensor body temperature. Significant error is caused by the discharge of a capacitor in the standard Exergen sensor, but we tested it without the capacitor. The sensors respond rapidly to changes in target temperature, but require 2 to 10 minutes to respond to changes in sensor body temperature, which is often the largest source of error. A new, sensitive method for measuring field of view indicates substantial peripheral vision for both sensors and a wider field of view than specified by the manufacturers. Here we describe sensor output as a function of target and sensor body temperatures, and provide a generic (sensor independent) equation that can be used to achieve +/- 0.2 C accuracy with Exergen sensors. The equation was developed and verified using two black body calibrators.  相似文献   

9.
光纤环绕制过程中的张力分析   总被引:3,自引:0,他引:3  
结合实际绕制光纤环经验,从绕制方法--四极对称绕法和绕制过程中既是重点又是难点的张力控制角度阐述了对光纤环绕制的几点看法,这些看法是在实际工作经验中总结出来的,希望对提高光纤环绕制的质量有所帮助,并利用一种BOTDR( Brillouin Optical Time Domain Reflectometer )对保偏光纤环的应力分布进行了测试和分析.测试和分析结果表明,BOTDR可用作光纤和光纤环的应力分析和筛选.研究、试验以及实际应用表明,绕环过程中张力控制是绕环质量的关键,精确控制作用于光纤上的外力在适当范围内.  相似文献   

10.
分析了一种由单模光纤耦合器和保偏光纤组成的混合光纤Sagnac干涉仪的反射谱和透射谱,揭示了这种干涉仪的光谱调制特性.基于其透射光谱的极值点特征,提出了一种简单、高精度的保偏光纤拍长测试技术并进行了精度分析,确定了待测保偏光纤长度的优化参数;搭建实验系统进行了实际测试.实验结果和理论估计一致.研究表明:该技术操作方便、测量可靠,拍长测量精度可优于0.01 mm.  相似文献   

11.
Comprehensive spectroscopic monitoring of plant health and growth in bioregenerative life support system environments is possible using a variety of spectrometric technologies. Absorption spectrometry and atomic emission spectrometry in combination allow for direct, on-line, reagentless monitoring of plant nutrients from nitrate and potassium to micronutrients such as copper and zinc. Fluorometric spectrometry is ideal for the on-line detection, identification and quantification of bacteria and fungi. Liquid Atomic Emission Spectrometry (LAES) is a new form of spectrometry that allows for direct measurement of atomic emission spectra in liquids. An electric arc is generated by a pair of electrodes in the liquid to provide the energy necessary to break molecular bonds and reduce the substance to atomic form. With a fiber probe attached to the electrodes, spectral light can be transmitted to a photodiode array spectrometer for light dispersion and analysis. Ultraviolet (UV) absorption spectrometry is a long-established technology, but applications typically have required specific reagents to produce an analyte-specific absorption. Nitrate and iron nutrients have native UV absorption spectra that have been used to accurately determine nutrient concentrations at the +/- 5% level. Fluorescence detection and characterization of microbes is based upon the native fluorescent signatures of most microbiological species. Spectral and time-resolved fluorometers operating with remote fiber-optic probes will be used for on-line microbial monitoring in plant nutrient streams.  相似文献   

12.
A wide variety of technical and science questions arise when attempting to envision the long-term support of plants, algae and bacteria in space. Currently, spaceflight data remain elusive since there are no U.S. carriers for investigating either the germane technical or scientific issues. The first flight of the Commercial Experiment Transporter (COMET) will provide a nominal 30 day orbital opportunity to evaluate such issues. The P-MASS is a small payload that is designed to meet the mass (40 lbs.), volume (1.5 cu.ft.), and power (120 W) constraints of one of several COMET payloads while enabling flight evaluations of plants, algae and bacteria. Various P-MASS subsystems have been subjected to extensive ground tests as well as KCl35 tests. Various biological sub-systems have been similarly evaluated. Through a variety of sensors coupled with color video, the P-MASS performance and the supported biological systems will be compared for terrestrial controls versus spaceflight materials. This small, low cost payload should return valuable information regarding the requirements for hardware and biological systems needed to move toward bioregenerative life support systems in space. In addition, it should be possible to accurately identify major unresolved difficulties that may arise in the long-term, spaceflight support of various biological systems. Finally, this generic spaceflight capability should enable a variety of plant research programs focused on the use of microgravity to modulate and exploit plant products for commercial applications ranging from new agricultural products to pharmacological feedstocks and new controlled agricultural strategies.  相似文献   

13.
A novel dielectric sensor technology has been developed for monitoring and control of plant nutrient delivery systems as part of NASA's Controlled Ecological Life Support System (CELSS) program. A unique measurement phenomenon was discovered in which the electrostatic field is shunted to a third terminal of the sensor, resulting in a much greater sensitivity to changes in the complex dielectric properties of the nutrient solution. Based on this phenomenon, a small, flexible, thin-film shunting dielectric sensor (SDS) was designed to provide low-frequency, non-invasive measurement of both the thickness and nutrient concentration of the layer of solution on a plant growth surface. Test results indicate a sensitivity of +/- 0.05mm in layer thickness while characterization of the ability to measure nutrient concentration continues. The development plan for this sensor is presented and other applications are discussed.  相似文献   

14.
由于具有质量轻与成本低等优点,光纤陀螺正在被广泛应用,而光源光谱的特性在很多方面又影响着光纤陀螺的性能。利用新型光纤制备技术,制备铋/铅共掺石英光纤,测试分析其吸收光谱与发光特性。用980nm与830nm双泵浦光激发,超宽带荧光光谱范围可覆盖1000~1700 nm,相比单泵情况,光谱大大拓宽。10dB带宽的光谱达到了650nm,光谱比较平坦,可以满足超宽带平坦光源的需要,并可作为超宽谱光源的理想增益介质。对应用于惯性导航系统、光纤陀螺传感器(Fiber Optic Gyroscopic Sensor, FOG)、光学相干断层扫描系统(Optical Coherence Tomography, OCT)与医学成像的超宽谱光源进行研究,具有非常重要的实际应用与战略意义。  相似文献   

15.
Modelling canopy photosynthesis in response to environmental conditions.   总被引:3,自引:0,他引:3  
Physiological models in the plant and crop sciences provide a means of integrating different aspects of the system, in particular the interaction between plant processes and environmental factors. This paper focuses on the response of canopy photosynthesis, including adaptation, to environmental conditions. Adaptation is likely to be important when considering controlled ecological life support systems since physiological characteristics are affected by past as well as current environmental conditions. In particular, the level of photosynthetic enzymes in a plant is generally greater for plants grown in high irradiance levels than for similar plants grown in low irradiance. The models have been developed to apply to 'normal' growing conditions, although the principles will apply to closed bioregenerative systems.  相似文献   

16.
为满足新一代导弹用三轴一体光纤陀螺组合高精度、集成化、高可靠等技术要求,通过光学及电子元器件系统级封装(SIP)技术实现了陀螺敏感组件模块化设计,采用陀螺敏感组件热隔离设计等方法,在优化三轴一体光纤陀螺组合返修率和总体设计接口适配性的前提下,提高了产品角速度测量性能指标。产品实测零偏稳定性达到0.037(°)/h(1σ),冲击振动及温度环境适应性优异,并与导弹飞行控制系统集成,可实现光电探测、惯性导航及姿态控制等功能。  相似文献   

17.
INS辅助的GPS接收机跟踪环结构和性能分析   总被引:1,自引:0,他引:1  
分析了GPS/INS的不同组合方式,研究了GPS接收机跟踪环的结构,给出了多普勒频移和时钟误差频率的外部估计方法,提出了一种使用低成本惯性器件信息辅助GPS接收机跟踪环的深组合(deepintegration)结构,建立了这种结构的前馈模型,并对其进行了仿真分析。仿真结果表明,这种结构可以使得接收机具有较宽的跟踪带宽和较好的抑制噪声能力,能显著提高GPS接收机的性能。  相似文献   

18.
随着智慧火箭概念的提出,对运载火箭数据获取技术提出新的挑战,目前,运载火箭存在测量领域受限、测量精度不高、可靠性不高、可扩展性差和可裁剪性不高等问题。结合数据获取现状和问题分析,总结出未来数据获取朝着智能化、网络化和轻质高效化方向发展的趋势。结合趋势研判给出某火箭的数据获取总体框架,并对结构健康监测、光纤传感网络、无缆化等关键技术的优缺点和应用场景进行对比分析,提出了光纤光栅传感网络、无线传感网络、磁谐振式无线传能等技术在智慧火箭数据获取上的应用展望。  相似文献   

19.
基于Allan方差法的光纤陀螺建模与仿真   总被引:1,自引:0,他引:1  
介绍了一种与实际情况相接近的陀螺模型,并给出了根据光纤陀螺的角度随机游走(ARW)和角速率随机游走(RRW)系数模拟产生陀螺随机误差数据的方法.角度随机游走和角速率随机游走系数可通过Allan方差法获得.理论分析表明,模拟产生的陀螺随机误差具有与实际的角度随机游走和角速率随机游走误差相一致的功率谱密度.通过仿真对文中所述的模拟产生陀螺随机误差的方法进行了验证,表明了方法的有效性.该方法可用于分析由陀螺和星敏感器构成的卫星姿态确定系统的性能.  相似文献   

20.
组合导航系统的鲁棒故障诊断   总被引:2,自引:0,他引:2  
 讨论了导航系统的故障检测问题,提出通过设计对特定导航系统故障敏感的最优鲁棒向量来检测组合导航系统故障,只利用传感器的测量数据,不需要具体的动态模型,并与常用的奇偶检测法进行了比较.最后以3个导航系统的组合为例,仿真结果显示,鲁棒故障诊断的检测故障、隔离故障效果明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号