首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
考虑太阳摄动的小行星附近轨道动力学   总被引:1,自引:1,他引:1       下载免费PDF全文
本文研究了艳后星(216 Kleopatra)和爱神星(433 Eros)附近的周期轨道,在考虑太阳引力摄动的情况下,发现了以往所遗漏的216 Kleopatra轨道族和环绕433 Eros的12族周期轨道,并且给出了它们的特性。研究结果表明,太阳引力对小行星平衡点位置的影响很小,但是对平衡点上航天器运动的影响较大。同族不稳定轨道中,大Jacobi常数轨道更容易在摄动后保持轨道原来特性,这很好地解释了小行星卫星在较远轨道上长期存在的可能性。  相似文献   

2.
仙女星座的尤波西龙(γ)是位于距地球44光年之遥的一颗恒星 ,也是天文学家们为寻找类地行星而选定的上百颗恒星中的一颗。最近 ,天文学家在它附近发现了若干颗行星。美国天文学家吉·马尔西和普·巴特列尔在对尤波西龙星的光谱的周期性变化进行观察研究后推断出 ,环绕尤波西龙星的是旋转的行星 ,至少有3颗 ,最靠近尤波西龙星的那颗行星 ,其质量是木星的3/4 ,其轨道半径为900万千米 ,它自转一周相当于地球上的4 6昼夜 ;第二颗行星其质量至少是木星的2倍 ,其轨道半径为12450万千米 ,它环绕尤波西龙星公转一周相当于242个…  相似文献   

3.
以月球背面的中继通信为背景,提出了基于三体系统引力场不对称特性的星–星测距自主定轨方案。该方案以环月极轨卫星和地–月L2点Halo轨道卫星组成中继通信网,以实现对月球两极和背面的覆盖。通过采集极轨卫星与Halo轨道卫星的测距信息,结合卡尔曼滤波在日–地–月动力学模型下获得两颗卫星的绝对轨道。数值仿真结果表明:本文方法能将导航的位置精度和速度精度分别提高到百米和厘米/秒量级。该自主导航方法还可以扩展到不规则引力场小天体附近星群运动的自主导航。  相似文献   

4.
火卫一周期准卫星轨道及入轨分析   总被引:1,自引:1,他引:0  
围绕火卫一的准卫星轨道(QSOs)因其具有良好的稳定性,是火卫一探测任务最为实用的轨道。在平面圆型限制性三体问题模型下,利用庞加莱截面和KAM环迭代方法探究了准卫星轨道的周期轨道族,并给出不同能量准卫星周期轨道的初始条件。针对火卫一周期准卫星轨道入轨,提出一种转移轨道设计方法:对准卫星周期轨道调整速度后进行反向积分,直至离开火卫一邻近区域,从而得到由火星环绕轨道向火卫一周期准卫星轨道的转移轨道,并调整转移轨道参数对燃料与时间消耗进行优化。研究结果表明,当周期准卫星轨道能量处于特定区间时,存在特定速度脉冲区间,可利用火卫一引力实现较少燃料消耗的轨道转移;在该速度脉冲区间中,通过选取较小的速度脉冲,可缩短转移时间。   相似文献   

5.
对于太阳抵近探测任务,从地球直接发射探测器至太阳附近需要消耗巨大能量,通过多次金星借力飞行,可有效降低地球发射能量C3及中途变轨的燃料消耗.本文研究基于金星共振借力的太阳抵近探测任务轨道优化设计,建立了连续共振借力和混合共振借力的转移轨道优化设计模型,并针对2025—2028年的发射窗口开展太阳抵近探测任务轨道优化设计.仿真结果表明,相比连续共振借力,混合共振借力可以有效缩短太阳抵近探测任务的轨道转移时间,对于地球发射能量C3和中途变轨燃料消耗的影响未见明显的规律性,能量降低与序列中的共振比相关.   相似文献   

6.
通过Garlerkin方法建立了考虑阻尼、材料非线性、温度变化和轴向激励的柔性臂系统动力学微分方程.分析了系统存在同、异宿轨道及周期轨道的充分必要条件,通过Hamilton函数得到了对应的参数方程表达式.根据非线性振动的多尺度法,得到了系统在3次超谐共振情况下的一次近似解及其定常解,揭示了系统内各参数之间的关系.对得到的微分方程进行数值计算,分析柔性臂系统参数对纵向振动响应曲线的影响.结果表明,材料非线性和温度变化对系统纵向振动的影响不可忽略;在一定参数条件下,系统有发生复杂非线性运动的可能.为了有效的控制柔性臂的振动,应合理选取系统的物理参数,避免其处于混沌运动状态.  相似文献   

7.
针对远距逆行轨道(DRO)的航天工程应用问题,研究了DRO的计算方法以及轨道特性,分析了DRO在实际力环境中的主要摄动因素,为DRO的精确建模和标称轨道设计奠定一定的理论基础。首先,利用仿真算例验证流函数法在计算DRO周期轨道族中的有效性。然后,利用该方法,通过改变雅可比常数,延拓计算DRO周期轨道族,获得不同共振比的DRO,仿真结果表明整数共振比的DRO在地月惯性坐标系中的轨迹是封闭的曲线,而共振比非整数的DRO则不封闭。最后,通过轨道外推分析影响DRO稳定性的主要摄动因素,仿真结果表明太阳引力和月球轨道偏心率是影响DRO稳定性的主要摄动因素。在动力学模型中,使用标准星历表示行星的运动状态,当积分时间多于10天时模型误差为km量级,因此在地月系这样大尺度的空间范围内,可以使用星历模型近似的分析DRO在真实力环境中的运动状态,为任务轨道设计提供依据。   相似文献   

8.
孙超  唐玉华  李翔宇  乔栋 《深空探测学报》2017,4(3):264-269,275
位于地月L2点周期轨道的中继星将首次为"嫦娥4号"月球背面着陆探测任务提供通信中继服务。中继星转移轨道设计是中继任务实施的关键环节。针对中继星转移轨道存在转移时间、近月点高度和halo轨道振幅等约束条件,系统研究了基于月球近旁的地月L2点转移轨道设计方法。首先基于限制性三体模型,分析了halo轨道族与着陆点可见性关系;然后将月球近旁转移轨道分为地月直接转移段和地月动平衡点附近周期轨道拟流形入轨转移段,采用带有状态约束的微分修正算法对这两段轨道进行拼接,得到了从地球附近至目标轨道族的月球近旁转移轨道;最后,针对南族halo轨道分析了halo轨道振幅和月球飞越高度对转移轨道设计的影响,以及转移轨道的入轨相位分布。仿真结果表明:月球近旁转移轨道设计方案具备工程上的可行性与优越性。该方案可以为实际工程任务和应用提供参考。  相似文献   

9.
极区从电离层到磁层的上行粒子流探测研究是空间天气建模中的重要问题,其起源和加速机制是磁层-电离层-热层耦合小卫星星座计划的主要科学目标. 磁层-电离层-热层耦合小卫星星座计划拟定由两颗磁层星和两颗电离层/热层星组成星座对极区进行联合观测. 其中,上行粒子源区附近的就位探测是电离层-热层耦合机制研究的重点,也是电离层/热层星轨道设计的关键. 根据相关空间探测计划和卫星观测结果,通过比较圆轨道和椭圆轨道两种方案,确定电离层/热层星采用椭圆轨道.   相似文献   

10.
本文我们计算了带电粒子在中性线磁场中运动的解析轨道。其结果是:(1)带电粒子在中性片磁场中的运动是粒子在中性线磁场或在具有北向分量的中性片磁场中的第一级近似形式。(2)带电粒子在中性片磁场中的解析轨道的第三级近似形式与电子计算机计算的数值轨道基本相同。它们仅仅在小扰动区与非小扰动区的交界线上出现一些偏差。(3)带电粒子在整个中性片磁场的运动可以分成三种形式。粒子一方面在垂直于磁场的平面上作闭合的周期性轨道运动, 同时闭合轨道的中心还沿着垂直于磁场平行于中性线方向漂移。另一方面粒子还沿磁力线方向做等速运动。(4)在小扰动区中粒子的闭合轨道是一个圆轨道, 但在非小扰动区中却是一个“8”字形轨道, 其漂移速度与小扰动区漂移方向相反, 其大小也比小扰动区漂移大很多。以上结果本文都给出一个完整的解析形式。   相似文献   

11.
Motivated by the near-future re-exploration of the cislunar space, this paper investigates dynamical substitutes of the Earth-Moon’s resonant Near-Rectilinear Halo Orbits (NRHOs) under the Elliptic-Circular Restricted Four-Body Problem formulation of the Earth-Moon-Sun system. This model considers that the Earth and Moon move in elliptical orbits about each other and that a third body, the Sun, moves in a circular orbit about the Earth-Moon barycenter. By making use of this higher-fidelity dynamical model, we are able to incorporate the Sun’s influence and the Moon’s eccentricity, two of the most significant perturbations of the cislunar environment. As a result of these perturbations, resonant periodic NRHOs of the Earth-Moon Circular Restricted Three-Body Problem (CR3BP) are hereby replaced by two-dimensional quasi-periodic tori that better represent the dynamical evolution of satellites near the vicinity of the Moon. We present the steps and algorithms needed to compute these dynamical structures in the Elliptic-Circular model and subsequently assess their utility for spacecraft missions. We focus on the planned orbit for the NASA-led Lunar Gateway mission, a 9:2 synodic resonant L2 southern NRHO, as well as on the 4:1 synodic and 4:1 sidereal resonances, due to the proximity to the nominal orbit and their advantageous dynamical properties. We verify that the dynamical equivalents of these orbits preserve key dynamical attributes such as eclipse avoidance and near-linear stability. Furthermore, we find that the higher dimensionality of quasi-periodic solutions offers interesting alternatives to mission designers in terms of phasing maneuvers and low-altitude scientific observations.  相似文献   

12.
研究了初始停泊轨道为椭圆时,空间飞行器在常值径向推力下运动的有界性和周期性.首先建立了飞行器运动的动力学方程,并通过能量积分和角动量积分进行了简化.然后将有界性的研究转化为一个一元三次不等式的求解,并在此基础上针对不同的初始真近点角分别进行了研究,得到了运动的边界和有界性条件.接下来利用椭圆积分研究了运动的周期性,分别研究了径向运动、极角转动以及整体运动的周期性.最后用数值算法得到了运动的周期轨道.  相似文献   

13.
Dynamics in the Phobos environment   总被引:2,自引:1,他引:1  
The dynamical environment on and about the Martian moon Phobos is explored. This planetary moon provides a unique dynamical environment in the solar system, being subject to extreme tidal forces and having a characteristically non-spherical shape. Further, it is not in a fully circular orbit, meaning that it has librations that arise from its eccentricity, contributing to a periodic forcing environment. Thus, to plan and implement missions in the vicinity of and on Phobos will require these considerations be taken into account. In this paper the latest published models of the Phobos shape and dynamics are used to characterize its dynamical environment in close proximity orbit about the body, for motion across its surface and for controlled hovering motion in its vicinity. It is found that surface motion is subject to a number of “speed limits” that can cause a moving vehicle to leave the surface and to possibly escape the moon and enter orbit about Mars. In terms of orbital stability, the existence of libration orbit families are characterized down to the surface using an exact potential, and the known stable QSO orbits are shown to be associated with families of stable quasi-periodic orbits.  相似文献   

14.
A way to improve the accuracy of the three-body problem model is taking into account the eccentricity of primary attractors. Elliptic Restricted Three-Body Problem (ER3BP) is a model for studying spacecraft trajectory within the three-body problem such that the orbital eccentricity of primaries is reflected in it. As the principal cause of perturbation in the employed dynamical model, the primaries eccentricity changes the structure of orbits compared to the ideal Circular Restricted Three-Body Problem (CR3BP). It also changes the attitude behavior of a spacecraft revolving along periodic orbits in this regime. In this paper, the coupled orbit-attitude dynamics of a spacecraft in the ER3BP are exploited to find precise periodic solutions as the spacecraft is considered to be in planar orbits around Lagrangian points and Distant Retrograde Orbits (DRO). Periodic solutions are repetitious behaviors in which spacecraft whole dynamics are repeated periodically, these periodic behaviors are the main interest of this study because they are beneficial for future mission designs and allow delineation of the system’s governing dynamics. Previous studies laid the foundation for spacecraft stability analysis or studying pitch motion of spacecraft in the ER3BP regime. While in this paper, at first, initial guesses for correction algorithms were derived through verified search methods, then correction algorithms were used to refine calculated orbit-attitude periodic behaviors. Periodic orbits and full periodic solutions are portrayed and compared to previous studies and simpler models. Natural periodic solutions are valuable information eventuate in the longer functional lifetime of spacecraft. Since the problem assumption considered in this paper is much closer to real mission conditions, these results may be the means to use natural bounded motions in the actual operational environment.  相似文献   

15.
Planetary rings     
The individual ring systems are described with dust/magnetosphere interactions high-lighted somewhat. Jupiter's main ring is tenuous and enveloped by the magnetosphere; it principally contains micron-sized silicate grains. A vertically-extended, radially-localized “halo” of submicron particles lies inward of the main ring while a newly-discovered very faint ring lies outside it. The classical Saturnian system is composed of water ice chunks with sizes principally between cm and meters. Satellite resonances determine some ring structure but most is not understood. The faint exterior rings (E, G, F and one just identified between the A and F rings) are intimately associated with magnetospheric particles and contain mainly small grains, which are also prominent in the “spokes” located in the dense, middle portion of the B ring. Most of the nine narrow Uranian rings are slightly inclined and eccentric, and presumably lie within the putative Uranian magnetosphere. Particles are likely carbonaceous; sizes are thought to be larger than microns.  相似文献   

16.
A variety of physical processes can erode the surfaces of planetary ring particles. According to current estimates, the most efficient of these over the bulk of Saturn's rings is hypervelocity impact by 100 micron to one centimeter radius meteoroids. The atoms, molecules, and fragments ejected from ring particles by erosion arc across the rings along elliptical orbits to produce a tenuous halo of solid ejecta and an extensive gaseous atmosphere. Continuous exchange of ejecta between different ring regions can lead to net radial transport of mass and angular momentum. The equations governing this ballistic transport process are presented and discussed. Both numerical and analytic studies of idealized ring systems illustrate that ballistic transport can cause significant mass redistribution in the rings, especially near regions of high density contrast, such as the inner edges of the A and B rings. Ejecta exchanges can also alter local particle sizes and compositions and may produce pulverized regoliths at least several centimeters deep. The meteoroid erosion rate is so high that significant global torques and mass loss are possible on times shorter than a solar system life time.  相似文献   

17.
This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth’s J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.  相似文献   

18.
Due to the characteristics of their orbits the GPS satellites are submitted to the following main perturbations: terrestrial gravitational field, luni-solar gravitational attraction and solar radiation pressure (including the effects of the Earth's shadow). An additional perturbation arises due to the 2:1 commensurability of the orbital period of the satellite with the period of the Earth's rotation. An analytical theory is briefly presented to solve the equations of motion including the previously mentioned effects. The analytical solution, based on the Lie-Hori method, is compared with a numerical integration of the equations.  相似文献   

19.
Solar sail halo orbits designed in the Sun-Earth circular restricted three-body problem (CR3BP) provide inefficient reference orbits for station-keeping since the disturbance due to the eccentricity of the Earth’s orbit has to be compensated for. This paper presents a strategy to compute families of halo orbits around the collinear artificial equilibrium points in the Sun-Earth elliptic restricted three-body problem (ER3BP) for a solar sail with reflectivity control devices (RCDs). In this non-autonomous model, periodic halo orbits only exist when their periods are equal to integer multiples of one year. Here multi-revolution halo orbits with periods equal to integer multiples of one year are constructed in the CR3BP and then used as seeds to numerically continue the halo orbits in the ER3BP. The linear stability of the orbits is analyzed which shows that the in-plane motion is unstable while the out-of-plane motion is neutrally stable and a bifurcation is identified. Finally, station-keeping is performed which shows that a reference orbit designed in the ER3BP is significantly more efficient than that designed in the CR3BP, while the addition of RCDs improve station-keeping performance and robustness to uncertainty in the sail lightness number.  相似文献   

20.
An interesting dynamics is studied in the restricted three-body problem where a particle abruptly transitions between resonance states, called a resonance hop. It occurs in a region about the secondary mass point which supports weak capture. This region, called a weak stability boundary, was recently proven to give rise to chaotic dynamics. Although it was numerically known that the resonance hop was associated with this boundary, this process was not well understood. In addition, the dynamical structure of the weak stability boundary has not been well understood. In this paper, we give a way to reveal the global structure of the weak stability boundary associated to resonance motions. This structure is shown to be surprisingly rich in resonant periodic motions interconnected by invariant manifolds. In this case, nearly all the motions are approximately resonant in nature where resonance hops can occur. The correlation dimension of orbits undergoing resonant motions, associated to the weak stability boundary, is also examined. The dynamics analyzed in the present paper is related to that studied by J. Marsden et al. under the perspective of Lyapunov orbits and the associated invariant manifolds. Applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号