首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Advanced Composition Explorer   总被引:2,自引:0,他引:2  
Stone  E.C.  Frandsen  A.M.  Mewaldt  R.A.  Christian  E.R.  Margolies  D.  Ormes  J.F.  Snow  F. 《Space Science Reviews》1998,86(1-4):1-22
The Advanced Composition Explorer was launched August 25, 1997 carrying six high-resolution spectrometers that measure the elemental, isotopic, and ionic charge-state composition of nuclei from H to Ni (1≤Z≤28) from solar wind energies (∼1 keV nucl−1) to galactic cosmic-ray energies (∼500 MeV nucl−1). Data from these instruments is being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. ACE also carries three instruments that provide the heliospheric context for ion composition studies by monitoring the state of the interplanetary medium. From its orbit about the Sun-Earth libration point ∼1.5 million km sunward of Earth, ACE also provides real-time solar wind measurements to NOAA for use in forecasting space weather. This paper provides an introduction to the ACE mission, including overviews of the scientific goals and objectives, the instrument payload, and the spacecraft and ground systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Stone  E.C.  Cohen  C.M.S.  Cook  W.R.  Cummings  A.C.  Gauld  B.  Kecman  B.  Leske  R.A.  Mewaldt  R.A.  Thayer  M.R.  Dougherty  B.L.  Grumm  R.L.  Milliken  B.D.  Radocinski  R.G.  Wiedenbeck  M.E.  Christian  E.R.  Shuman  S.  Trexel  H.  von Rosenvinge  T.T.  Binns  W.R.  Crary  D.J.  Dowkontt  P.  Epstein  J.  Hink  P.L.  Klarmann  J.  Lijowski  M.  Olevitch  M.A. 《Space Science Reviews》1998,86(1-4):285-356
The Cosmic-Ray Isotope Spectrometer is designed to cover the highest decade of the Advanced Composition Explorer's energy interval, from ∼50 to ∼500 MeV nucl−1, with isotopic resolution for elements from Z≃2 to Z≃30. The nuclei detected in this energy interval are predominantly cosmic rays originating in our Galaxy. This sample of galactic matter can be used to investigate the nucleosynthesis of the parent material, as well as fractionation, acceleration, and transport processes that these particles undergo in the Galaxy and in the interplanetary medium. Charge and mass identification with CRIS is based on multiple measurements of dE/dx and total energy in stacks of silicon detectors, and trajectory measurements in a scintillating optical fiber trajectory (SOFT) hodoscope. The instrument has a geometrical factor of ∼r250 cm2 sr for isotope measurements, and should accumulate ∼5×106 stopping heavy nuclei (Z>2) in two years of data collection under solar minimum conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Stone  E.C.  Cohen  C.M.S.  Cook  W.R.  Cummings  A.C.  Gauld  B.  Kecman  B.  Leske  R.A.  Mewaldt  R.A.  Thayer  M.R.  Dougherty  B.L.  Grumm  R.L.  Milliken  B.D.  Radocinski  R.G.  Wiedenbeck  M.E.  Christian  E.R.  Shuman  S.  von Rosenvinge  T.T. 《Space Science Reviews》1998,86(1-4):357-408
The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component, which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated (VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation of SIS and the scientific objectives that the instrument will address. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
McComas  D.J.  Bame  S.J.  Barker  P.  Feldman  W.C.  Phillips  J.L.  Riley  P.  Griffee  J.W. 《Space Science Reviews》1998,86(1-4):563-612
The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity) for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE; and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Gold  R.E.  Krimigis  S.M.  Hawkins  S.E.  Haggerty  D.K.  Lohr  D.A.  Fiore  E.  Armstrong  T.P.  Holland  G.  Lanzerotti  L.J. 《Space Science Reviews》1998,86(1-4):541-562
The Electron, Proton, and Alpha Monitor (EPAM) is designed to make measurements of ions and electrons over a broad range of energy and intensity. Through five separate solid-state detector telescopes oriented so as to provide nearly full coverage of the unit-sphere, EPAM can uniquely distinguish ions (Ei≳50 keV) and electrons (Ee≳40 keV) providing the context for the measurements of the high sensitivity instruments on ACE. Using a ΔE×E telescope, the instrument can determine ion elemental abundances (E≳0.5 MeV nucl−1). The large angular coverage and high time resolution will serve to alert the other instruments on ACE of interesting anisotropic events. The experiment is controlled by a microprocessor-based data system, and the entire instrument has been reconfigured from the HI-SCALE instrument on the Ulysses spacecraft. Inflight calibration is achieved using a variety of radioactive sources mounted on the reclosable telescope covers. Besides the coarse (8 channel) ion and (4 channel) electron energy spectra, the instrument is also capable of providing energy spectra with 32 logarithmically spaced channels using a pulse-height-analyzer. The instrument, along with its mounting bracket and radiators weighs 11.8 kg and uses about 4.0 W of power. To demonstrate some of the capabilities of the instrument, some initial performance data are included from a solar energetic particle event in November 1997. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
7.
Elphic  R.C.  Means  J.D.  Snare  R.C.  Strangeway  R.J.  Kepko  L.  Ergun  R.E. 《Space Science Reviews》2001,98(1-2):151-168
The FAST magnetic field investigation incorporates a tri-axial fluxgate magnetometer for DC and low-frequency (ULF) magnetic field measurements, and an orthogonal three-axis searchcoil system for measurement of structures and waves corresponding to ELF and VLF frequencies. One searchcoil sensor is sampled up to 2 MHz to capture the magnetic component of auroral kilometric radiation (AKR). Because of budget, weight, power and telemetry considerations, the fluxgate was given a single gain state, with a 16-bit dynamic range of ±65536 nT and 2 nT resolution. With a wide variety of FAST fields instrument telemetry modes, the fluxgate output effective bandwidth is between 0.2 and 25 Hz, depending on the mode. The searchcoil telemetry products include burst waveform capture with 4- and 16-kHz bandwidth, continuous 512-point FFTs of the ELF/VLF band (16 kHz Nyquist) provided by a digital signal processing chip, and swept frequency analysis with a 1-MHz bandwidth. The instruments are operating nominally. Early results have shown that downward auroral field-aligned currents, well-observed over many years on earlier missions, are often carried by accelerated electrons at altitudes above roughly 2000 km in the winter auroral zone. The estimates of current from derivatives of the field data agree with those based on flux from the electrons. Searchcoil observations help constrain the degree to which, for example, ion cyclotron emissions are electrostatic.  相似文献   

8.
The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.  相似文献   

9.
The extraordinary life and scientific achievements of Johannes Geiss span an almost impossible breadth of scientific topics, from the study of rocks to tenuous plasmas, from volcanoes to meteorites. But, his impact also extends way beyond the field of science. Professor Geiss is a well-known teacher and a highly successful science leader whose impact has been felt at the University of Bern, in Switzerland, and around the globe. We present here a brief summary of this highly successful career via a pictorial overview and a movie compiled by a former student who had the good luck to work with Professor Geiss during his years at the University of Bern. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

10.
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.  相似文献   

11.
火星探测器气动外形/弹道一体化多目标优化   总被引:1,自引:0,他引:1  
针对火星探测器概念设计阶段的需求,提出了融合气动外形、弹道和开伞条件的一体化多目标优化设计方法。首先建立了火星探测器进入段三自由度弹道运动方程,基于修正牛顿理论推导了适用于具有较大半锥角球锥外形的气动参数估算模型,采用Sutton-Graves公式计算了驻点热流密度。以开伞高度、总吸热量和容积率为目标函数建立了火星探测器气动外形/弹道一体化多目标优化模型,采用基于分解的多目标进化算法(MOEA/D)进行求解计算并与参考设计进行了对比。数值结果表明:多目标优化方法提供多个三目标均优于参考设计的Pareto最优解,为火星探测器的概念设计提供了一定的参考依据。  相似文献   

12.
麦先根  田丹  卫进 《航空计算技术》2014,(2):118-120,123
满足ARINC 653标准的嵌入式实时分区操作系统内部提供了多种系统对象,远程系统浏览器是系统开发者在宿主机端查看这些系统对象的最简便快捷的开发工具。描述了分区操作系统信息组织形式和远程信息协议及远程系统浏览器的工作流程。提出了一种基于Eclipse和RSE的远程系统浏览器的系统结构,以及各结构部分的功能。方便系统开发者在宿主机端交叉开发在目标机上运行的分区操作系统系统软件及应用软件。  相似文献   

13.
国际油价的高企,引发航空运输业的危机,导致航空公司削减运力、停业、或重组。航空公司这些无奈的举措加速了老龄飞机的淘汰,MRO企业原有的工作计划也随之被打乱,维修业务也将减少,未来两年内航空维修市场将无法继续保持原有的增长速度。高油价也催生了对发动机的高效率需求,使发动机的升级改装业务存在逆市上扬的可能性。  相似文献   

14.
We describe the Far IR Explorer, a MIDEX-class orbital mission designed to survey the entire sky at millimeter and sub-millimeter wavelengths. The primary science goal of FIRE is to map the Cosmic Microwave Background with 20 resolution and 1 ppm precision. In addition, FIRE will measure diffuse radio and infrared emission from the Galaxy with unprecedented sensitivity, and will uniformly survey the entire sky to a limiting flux density of <100 mJy (3 ).  相似文献   

15.
士元 《国际航空》2002,(2):60-61
美国NASA于去年成功发射了“奥德塞”火星探测器。该探测器此行的目的是探测火星表层上水的现状和其深度、火星表面地质构造等,以便帮助科学家们分析火星上是否有生命存在  相似文献   

16.
The Interstellar Boundary Explorer (IBEX) Science Operations Center is responsible for supporting analysis of IBEX data, generating special payload command procedures, delivering the IBEX data products, and building the global heliospheric maps of energetic neutral atoms (ENAs) in collaboration with the IBEX team. We describe here the data products and flow, the sensor responses to ENA fluxes, the heliospheric transmission of ENAs (from 100 AU to 1 AU), and the process of building global maps of the heliosphere. The vast majority of IBEX Science Operations Center (ISOC) tools are complete, and the ISOC is in a remarkable state of readiness due to extensive reviews, tests, rehearsals, long hours, and support from the payload teams. The software has been designed specifically to support considerable flexibility in the process of building global flux maps. Therefore, as we discover the fundamental properties of the interstellar interaction, the ISOC will iteratively improve its pipeline software, and, subsequently, the heliospheric flux maps that will provide a keystone for our global understanding of the solar wind’s interaction with the interstellar medium. The ISOC looks forward to the next chapter of the IBEX mission, as the tools we have developed will be used in partnership with the IBEX team and the scientific community over the coming years to define our global understanding of the solar wind’s interaction with the local interstellar medium.  相似文献   

17.
18.
Because of the strong absorption of extreme ultraviolet radiation by hydrogen and helium, almost every observation with the Extreme Ultraviolet Explorer (EUVE) satellite is affected by the diffuse clouds of neutral gas in the local interstellar medium (LISM). This paper reviews some of the highlights of the EUVE results on the distribution and physical state of the LISM and the implications of these results with respect to the interface of the LISM and the heliosphere. The distribution of sources found with the EUVE all-sky surveys shows an enhancement in absorption toward the galactic center. Individual spectra toward nearby continuum sources provide evidence of a greater ionization of helium than hydrogen in the Local Cloud with an mean ratio of H I/He I of 14.7. The spectral distribution of the EUV stellar radiation field has been measured, which provides a lower limit to local H II and He II densities, but this radiation field alone cannot explain the local helium ionization. A combination of EUVE measurements of H I, He I, and He II columns plus the measurement of the local He I density with interplanetary probes can place constraints on the local values of the H I density outside the heliosphere to lie between 0.15 and 0.34 cm–3 while the H II density ranges between 0.0 and 0.14 cm–3. The thermal pressure (P/k = nT) of the Local Cloud is derived to be between 1700 and 2300 cm–3 K, a factor of 2 to 3 above previous estimates.  相似文献   

19.
深空探测器自主技术发展现状与趋势   总被引:6,自引:0,他引:6  
深空探测器距离地球远、所处环境复杂、苛刻,利用地面测控站进行深空探测器的遥测和遥控已经很难满足探测器控制的实时性和安全性要求。深空探测器自主技术即通过在探测器上构建一个智能自主管理软件系统,自主地进行工程任务与科学任务的规划调度、命令执行、星上状态的监测与故障时的系统重构,完成无人参与情况下的探测器长时间自主安全运行,自主技术已经逐渐成为深空探测领域未来发展的一项关键技术。本文首先分析了传统测控模式对深空探测的约束,回顾了深空探测器自主技术发展的现状,分析了实现深空探测器自主运行的关键技术,包括在轨自主管理系统设计技术、自主任务规划技术、自主导航与控制技术、自主故障处理技术和自主科学任务操作技术。然后结合深空探测工程实施和技术发展需求,提出未来深空探测器自主技术发展的趋势和重点。  相似文献   

20.
深空探测器自主技术发展现状与趋势   总被引:6,自引:0,他引:6  
 深空探测器距离地球远、所处环境复杂、苛刻,利用地面测控站进行深空探测器的遥测和遥控已经很难满足探测器控制的实时性和安全性要求。深空探测器自主技术即通过在探测器上构建一个智能自主管理软件系统,自主地进行工程任务与科学任务的规划调度、命令执行、星上状态的监测与故障时的系统重构,完成无人参与情况下的探测器长时间自主安全运行,自主技术已经逐渐成为深空探测领域未来发展的一项关键技术。本文首先分析了传统测控模式对深空探测的约束,回顾了深空探测器自主技术发展的现状,分析了实现深空探测器自主运行的关键技术,包括在轨自主管理系统设计技术、自主任务规划技术、自主导航与控制技术、自主故障处理技术和自主科学任务操作技术。然后结合深空探测工程实施和技术发展需求,提出未来深空探测器自主技术发展的趋势和重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号