首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
积分方程法计算翼型的跨音速绕流   总被引:2,自引:0,他引:2  
苏继超  吴礼义 《航空学报》1987,8(11):543-552
从跨音速小扰动方程出发推导积分方程的过程中,本文用任意形状的封闭曲线CQ(其极限趋于零)挖去奇点Q,最终得到无奇性(指无穷奇性,不包括Cauchy奇性)的积分方程。 对于跨音速流中的圆头翼型的前缘问题,提出了一种解决办法。 证明了Nixon给出的反演公式对于超临界有激波的小扰动流动也成立。 关于积分方程法中的人工粘性方法,对Sachdev和Lobo提出的方法做了改进。 最后给出了NACA0012翼型在有无升力和有无激波各种状态下的计算结果。比较表明,本方法的计算结果与其它方法的计算结果符合得较好,且计算量很小。  相似文献   

2.
张慧骝  曹起鹏 《航空学报》1988,9(3):103-107
 本文给出一种带小分离气泡的任意翼型粘性跨音速绕流的计算方法,采用有粘-无粘干扰迭代的概念。无粘流的全速势方程用AF差分格式在保角变换法生成的计算网格中求解,粘流附面层方程用C-S盒式法求解,用逆算法消除分离点处的奇性。本文对Ma_∞=0.8,Re_∞=2×10~6,迎角α=3.5°和4°的NACA64A010翼型粘性绕流进行了计算,结果与实验相比较,吻合良好。  相似文献   

3.
昂海松  陈钟禄 《航空学报》1986,7(2):205-211
在跨音速非定常势流计算方面,人们一直在努力寻求处理包括激波运动的非线性问题的能力和计算效率的提高。Ballhaus和Goorjian(1977年)用交替方向隐式差分法(ADI)成功地直接求解了时间域的非定常跨音速小扰动方程(此法称为“LTRAN2”)。文献[5]引用坐标变换也做了类似LTRAN2的工作。  相似文献   

4.
伍贻兆 《航空学报》1987,8(7):392-397
一、引言 众所周知,钝头翼型的头部区域对均匀来流的扰动不再是小量,该处流动不符合小扰动假设。因此,由跨音速小扰动方程得出的解在头部区域失效。本文将流场分为外部解区,内外解区及头部附近的内内解区(见图1)。  相似文献   

5.
本文在机翼钝前缘处用精确速势方程和精确的边界条件,其他地方用纵向大扰动而横向小扰动的速势方程和相应的边界条件,联立求解。数值算例1为矩形机翼,展弦比λ=12,翼剖面为NACA0012,自由流的马赫数M=0.63,迎角α=2°,翼根剖面压力分布的计算结果与二元亚音速精确数值解(Sells,1968)接近。算例2为NACA RM A51G31实验的机翼,垂直于1/4弦线的翼剖面为NACA64A010,其后退角χ1/4=45°,λ=3,根梢比η=2,M=0.4,0.8,0.9,α=2°。计算与实验接近。 本文建立跨音速定常小扰动速势差分方程的线松弛改进迭代在局部线化假设下的稳定性条件和松弛解收敛到原来的微分方程解的条件。这些条件大多数与数值实验相符。  相似文献   

6.
本文采用TSDH方程计算三维后掠机翼的跨音速绕流,考虑了适用于机翼钝前缘的前缘边界条件和前缘速势方程。采用Jameson格式在不等步长格网中的推广形式,把TSDH方程离散化为差分方程组。然后,在整个计算空间内布置稀网,在机翼附近再布置密网,进行稀密网的交替迭代,以加速收敛和提高计算精度。对ONERA M6机翼的超临界无激波和有激波情况的计算表明,TSDH解与FVP解和风洞试验符合良好。  相似文献   

7.
杨岞生 《航空学报》1989,10(3):203-204
文献[1]是一篇参加国际会议的文章,由第二作者在会上宣读。当时,我们只准备在会议上透露一信息:我们已可建立可压缩非线性位流方程的边界元解法。对方法的中心思想无意细说,拟在此项研究工作结束后再正式发表专文系统叙述。所以文献[1]写得比较简单显得晦涩。现仅就文献[2]和文献[3]对文献[1]所提的问题作如下补充说明,我们今后发表的正式文章中对此将作更全面的论述。  相似文献   

8.
苏耀西 《航空学报》1988,9(4):173-178
 在西德宇航院跨音速风洞(TWB)进行的翼型油流实验结果表明,传统的关于侧壁效应的概念和理论只能适用于亚临界流动。超临界情况下,侧壁效应现象更复杂,影响更严重。实验中观察到的流油谱可分为五类。油流谱的发展规律说明侧壁干扰主要来源于侧壁边界层的位移效应。实侧壁“二元风洞”对跨音速翼型实验不能模拟真实情况。油流照片表明,即使风洞宽度达到翼型弦长的3.4倍,侧壁对中心截面的流动仍会有明显影响,侧壁抽气技术作为克服侧壁效应的手段是很有希望的。  相似文献   

9.
杨勇  俞守勤 《航空学报》1996,17(4):448-451
 用积分方程方法求解 Prandtl- Glauert算子表示的全位势方程 ,并计算了翼 -身组合体跨音速绕流。用 Murman- Cole差分格式计算空间场源强度 ,以捕捉激波。计算结果与相应的实验结果符合良好  相似文献   

10.
对跨音速风洞洞壁干扰问题的研究由来已久。经典的洞壁干扰理论是以考虑压缩性影响的线化亚音速理论为基础的。将此线性理论用于跨音速风洞,存在着根本缺陷。另一方面,由于人们缺乏对透气壁流体流动及粘性损失特性的足够了解,过去的干扰修正理论都只能基于半经验的均匀线化边界条件。随着计算流体力学的迅速发展,出现直接求解跨音速非线性方程确定洞壁干扰的方法,但这类方法,由于使用均匀线化边界条件,其适用性仍十分有限。  相似文献   

11.
本文采用压强极小积分有限元法计算了NACA 0012翼型的跨音速流场。出发方程为全速位方程。用人工密度的方式引入人工粘性。计算网格是通过解析/数值变换的方法自动生成的。采用线松弛法和人工时间相关法求解有限元方程。给出了有关的数值结果。  相似文献   

12.
俯仰振荡翼型跨音速粘性绕流的数值计算   总被引:1,自引:0,他引:1  
代捷  刘千刚 《航空学报》1996,17(5):79-82
以LU-TVD混合格式求解二维非定常湍流N-S方程,计算了绕1/4弦点振荡的翼型跨音速粘性绕流解,与实验结果吻合较好。通过取不同CFL数计算表明:在能得到非定常稳态解的情况下,取小CFL数更能真实地反映非定常时间历程,具有更高的可信度  相似文献   

13.
黎先平  张国富 《航空学报》1989,10(11):598-602
 在应用解全速位方程的最小压强积分有限元法求解绕升力翼型的跨音速流动时,将不可压流中求解绕升力翼型的耦合单位环量流动和无环量流动的解法推广到可压流中。为了确定环量,本文所用Kutta条件是:在后缘处,气流流向平行于后缘角二等分线。因有限元法对网格无正交性要求,因而可在椭圆变换前后进行剪切和延伸变换。这种网格生成法易于构成适用于复杂形状的有限元网格。通过计算并将其结果与文献中的数据比较,表明这种方法应用方便且有较快的计算速度和较高的计算精度。  相似文献   

14.
平面大头叶栅跨声速流动的一种有效解法   总被引:1,自引:1,他引:1  
准确数值预估叶片头部表面的压力分布,一直是叶片气膜冷却设计中十分重要而又尚未圆满解决的问题。本文针对这个问题提出了一个高准确度、高效率的计算方法。 在文献[1]的基础上,本文从任意正交曲线坐标系中的基本方程出发,引入Von Misses变换,导出了相应的流线控制方程,并具体地在拟边界层坐标系中计算了RA叶栅流场,结果与实验符合甚好,据作者所知,本文方法是已见到的计算同类叶栅方法中准确度最高、花费机时最少的。  相似文献   

15.
本文对一方向上大扰动的平面跨音速势流微分方程提出了新的近似简化方案,从数学上完成了相应积分方程的推导;其中关于边界及激波条件作了小扰动近似处理;最后提供了关于亚临界流的算例。  相似文献   

16.
从积分形式的非定常Euler方程出发,在固联于振动冀型的贴体坐标系下,采用有限体积法进行离散,并根据对称型TVD格式构造相应的数值通量,数值模拟了振动翼型的非定常跨音速绕流的变化过程。计算结果表明,该方法能较好地捕捉流场中的运动激波,准确地定出激波位置与强度;并且易于推广到求解任意振动方式的跨音速非定常绕流问题。  相似文献   

17.
复合振动翼型跨声速非定常流计算   总被引:2,自引:1,他引:2  
在文献[1]、[2]的基础上,本文把绕翼弦中点作旋转振动的翼型跨声速流计算推广到翼型作水平、垂直方向的平移振动以及平移与旋转振动的叠加。本方法主要特点是网格与翼型一起运动,对无穷远及翼面边界条件作了精确的处理以及计算网格数很少。本文结果对进一步研究旋翼、叶轮转子等的非定常气动力将有重要的意义。  相似文献   

18.
朱自强  夏智勋  吴礼义 《航空学报》1992,13(10):463-468
给出一种跨音速翼型和机翼的反设计计算方法。对所应用的积分方程反方法引入人工粘性项;采用Riegels因子法消除前缘奇性;对强激波问题采用光滑-松弛过程;并将方程中的系数积分成解析形式;对二维翼型反设计计算还提出了一种封闭形式的正则化条件。算例结果表明,该方法对跨音速翼型和机翼设计是一种有效的工具。  相似文献   

19.
二维跨音速流动计算的显式多步有限面积方法   总被引:1,自引:1,他引:1  
本文按Jameson等的思路,采用新的人工粘性项系数,建立显式多步有限面积方法,给出绕NACA0012翼型和RAE2822翼型跨音速流动的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号