共查询到20条相似文献,搜索用时 15 毫秒
1.
E M Nedukha 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1121-1126
Changes in cellulose and callose content during cell wall regeneration in Brassica oleracea protoplasts have been examined by cytofluorimetry following their exposure to the conditions of the horizontal clinostat (2 r.p.m.) for 10 days. In comparison with controls, cellulose content decreased 4-fold and 28% of the protoplasts failed to resynthesize a wall in the clinorotated sample. The callose content was almost doubled in clinostated cells. Callose synthesis fluctuated in both control and clinorotated protoplasts. The results support the idea that inhibition of cellulose synthesis in protoplasts grown on the clinostat is caused by a change of plasmalemma fluidity and functioning, and also by a disturbance to the state of cytoplasmic calcium under conditions of simulated microgravity. 相似文献
2.
E M Nedukha 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):99-102
Using electroncytochemical and biochemical methods, differences between the cytochemical reaction intensity and activity of the cellulosolytic enzymes in Funaria hygrometrica moss cells grown for 30 days in the horizontal clinostat (2 rev/min) and in control have been studied. It has been shown that on clinostating the precipitate amount and size increases with the cellulase activity enhancement in the periplasmic space and protonema cell walls, when compared to control. Using biochemical methods it has been found that the activity of both endo-1,4-beta-glucanase and exo-1,4-beta-glucanase was higher under these conditions. A decrease of cellulose total content, its crystalline form, and pectic substances as well as an increase of hemicellulose content have been revealed in the clinostated material compared to control. Data obtained are discussed regarding the possible mechanism of cellulase activation and synthesis inhibition and cellulose crystallization in plant cell walls at clinostating. 相似文献
3.
J. Neubert W. Briegleb 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(14):151-157
The vestibular apparatus of tadpoles (Rana temporaria) exposed to simulated weightlessness was examined by electron microscopy. Extended exposure to simulated weightlessness is followed by significant alterations in the sensory epithelia and also in the otolith membrane. Large vacuoles, filled with necrobiotic mitochondria and fragments of endoplasmic reticulum, were concentrated in the region where an otolith membrane covers the hair cells but were mostly absent in zones of the epithelia with undifferentiated cells. The number of otoconia in the otolith membrane was diminished. The results were compared with data from space flight experiments and some concordance was noted. The possible connection between some unusual behavior of the tadpoles after weightlessness simulation and the structural alterations in the gravitational sensors was discussed. 相似文献
4.
E M Nedukha 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):83-86
The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive peculiarity of the cells cultivated on clinostat. It testifies to the fact that increasing of free calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weightlessness. 相似文献
5.
A. N. Parmar G. Hasinger M. Arnaud X. Barcons D. Barret H. Bhringer A. Blanchard M. Cappi A. Comastri T. Courvoisier A. C. Fabian F. Fiore I. Georgantopoulos P. Grandi R. Griffiths A. Hornstrup N. Kawai K. Koyama K. Makishima G. Malaguti K. O. Mason C. Motch M. Mendez T. Ohashi F. Paerels L. Piro T. Ponman J. Schmitt S. Sciortino G. Trinchieri M. van der Klis M. Ward 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2623
Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2–5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1–2.5 keV sensitivity will then be 4 × 10−18 erg cm−2 s−1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift. 相似文献
6.
M R Shavers N Zapp R E Barber J W Wilson G Qualls L Toupes S Ramsey V Vinci G Smith F A Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1333-1337
With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. 相似文献
7.
F Raulin J M Greenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):975-978
High molecular weight organic compounds are involved in the chemistry and physics of many astrophysical and planetary objects. They are or should be present in interstellar dust, in comets and meteorites, in the Giant planets and Titan, in asteroids Triton and icy satellites. They represent a class of very complex organic material, part of which may have played a role in the origin of life on Earth. Thus they directly concern prebiotic chemistry and exobiology. 相似文献
8.
R A Fox N G Daunton M L Corcoran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):245-253
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals. 相似文献
9.
H G Paretzke 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):15-20
Heavy charged particles interacting with biological cells can produce a wide variety of different physical, chemical and biological consequences. A rigorous identification of relevant chemical and biological alterations of biomolecules in cells, however, is still lacking and, thus, it is difficult to identify the potential biological importance of different early physical events. In addition, due to experimental and theoretical problems also little is known about the details of energy transfer, -absorption and -decay from projectiles to atoms/molecules in condensed targets; this is particularly true for not completely stripped heavy ions. Nevertheless, one might conclude from available data that higher densities of physical energy absorption events have a significantly higher probability to lead to qualitatively more severe biochemical alterations as regards the induction of DNA double strand breaks and of chromatin damage. It is not very likely that energy migration along the DNA molecule in biological cells over long distances plays a significant role as contributor to these biological radiation effects. 相似文献
10.
H Yanagawa Y Makino K Sato M Nishizawa F Egami 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(9):69-74
In the course of a study of possible mechanism for chemical evolution in the primeval sea, we observed the formation of alpha-amino acids and N-acylamino acids from alpha-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5-39% yield after hydrolysis with 6N HCl. Similarly when glyoxylic acid was treated with methylamine it yielded N-oxalylsarcosine, which could be hydrolyzed to sarcosine with 17-25% overall yield upon hydrolysis. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3-7% overall yield upon hydrolysis. The pH optima in these reactions were pH 3-4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and serine were formed from alpha-ketoglutaric acid, phenylpyruvic acid and hydroxypyruvic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate for glutamic acid synthesis. Phenylacetylphenylalanineamide was also isolated as an intermediate for phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions is proposed. 相似文献
11.
Y Ishikawa H Yoshida M Kinoshita A Murakami K Sugiura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1517-1527
Research of the effect of space environment on an ecosystem consisting of plants and animals is essential when they are to be positively used in space. Although there have been experiments on various organisms under space environment in the past, they mainly studied the effect of space environment on an individual organism or a single species. Microcosm is drawing attention as an experimental material of an ecosystem consisting of multiple species. The object in this research is to understand the nature of this network system called ecosystem. Thus, a mixed microorganism culturing system consisting of three types of microorganisms which form a minimum food chain system as a closed ecosystem (chlorella as the producer, bacteria as the decomposer, and rotifer as the consumer) was taken for the subject, on which to research the universal characteristics of ecosystems. From the results of experiments under the terrestrial environment, formation of colonies, which is an ecological structure, has been observed at its mature stage. The organisms form an optimal substance circulation system. Therefore, formation of colonies in simulation models is important. Many attempts have been made to create ecosystem models. For example, the Lotka-Volterra model forms a simultaneous equation with the differential equation expressing predator and prey relationship and many numerical calculations have been conducted on various ecosystems based on expanded L-V models. Conventionally, these top-down methods have been used. However, since this method only describes the average concentration of organisms that are distributed uniformly throughout the system and cannot express the spatial structure of the system, it was difficult to express ecosystem structures like colonies and density distributions. In actual ecosystems, there is heterogeneity in the number of individuals and in substance density, and this is thought to have great significance in ecosystems. Consequently, an individual-based model was used that applies rules to predator-prey relationship, suppression, production, self suppression, etc., of each species. It enabled the emergence of the overall system only by its local rules, and it was possible to reproduce colony generation. In addition, the transition and the ratio of populations for each species match well with experimental results. 相似文献
12.
N. Singh B. I. Vashi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(12):53-56
Collection of electrons by a long conducting cylinder in a flowing plasma is studied by means of numerical simulations. The plasma flow simulates the relative motion between a spacecraft and plasma. The sheath structures and the levels of electron current collections for the cases with and without an ambient magnetic field (
) are studied. It is found that for the flow perpendicular to the magnetic field, the current is considerably enhanced depending on the relative drift velocity. In the case of a non-zero magnetic field perpendicular to the cylinder axis, the potential structure is a two-dimensional double layer with dimensions L L|, where L and L| are the dimensions perpendicular and parallel to
, respectively. L is found to be the current limiting radius given by the Parker-Murphy model. For the flow along
, the electron current is found to be smaller than that for the flow perpendicular to
. This is explained in terms of the potential structures. 相似文献
13.
U. Mall C. Wöhler A. Grumpe R. Bugiolacchi M. Bhatt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Recently launched hyper-spectral instrumentation with ever-increasing data return capabilities deliver the remote-sensing data to characterize planetary soils with increased precision, thus generating the need to classify the returned data in an efficient way for further specialized analysis and detection of features of interest. This paper investigates how lunar near-infrared spectra generated by the SIR-2 on Chandrayaan-1 can be classified into distinctive groups of similar spectra with automated feature extraction algorithms. As common spectral parameters for the SIR-2 spectra, two absorption features near 1300 nm and 2000 and their characteristics provide 10 variables which are used in two different unsupervised clustering methods, the mean-shift clustering algorithm and the recently developed graph cut-based clustering algorithm by Müller et al. (2012). The spectra used in this paper were taken on the lunar near side centering around the Imbrium region of the Moon. More than 100,000 spectra were analyzed. 相似文献
14.
W F Dempster 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):331-335
Atmospheric leakage between a CELSS and its surround is driven by the differential pressure between the two. In an earth-based CELSS, both negative and positive differential pressures of atmosphere are created as the resultant of three influences: thermal expansion/contraction, transition of water between liquid and vapor phases, and external barometric pressure variations. The resultant may typically be on the order of 5000 pascals. By providing a flexible expansion chamber, the differential pressure range can be reduced two, or even three, orders of magnitude, which correspondingly reduces the leakage. The expansion chamber itself can also be used to measure the leak rate. Independent confirmation is possible by measurement of the progressive dilution of a trace gas. These methods as employed at the Biosphere 2 facility have resulted in an estimated atmospheric leak rate of less than 10 percent per year. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(3):384-387
The hydrogen Lyman (Lyα, 121.267 nm and Lyβ, 102.572 nm) lines are important contributors to the solar extreme ultra violet (EUV) flux which illuminates the upper Earth’s atmosphere. From high resolution spectral observations performed with the solar ultraviolet measurement of emitted radiations (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO), the detailed profiles of these two lines have been obtained. Some insights into the variation of the shape of the profiles, sampled throughout the present solar cycle 23, are given and discussed. 相似文献
16.
M Schafer R Facius G Reitz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):1039-1046
In order to understand radiation mechanisms of heavy ions in detail, it is necessary to study effects of single ions on individual biological test objects. Spores of Bacillus subtilis have been used as a suitable small biological test system to measure the inactivation in dependence on the radial distance to the tracks of charged particles. Accelerator experiments have been performed using a modified Biostack technique--biological objects sandwiched between nuclear track detectors. Results of these experiments using ions differing in their energy and atomic number will be discussed under following aspects: (i) methodological differences between the experiments and their possible influences on the results, (ii) common features which are independent on the particle type and energy, (iii) theoretical expectations and problems to find solid theoretical concepts which explain the results. 相似文献
17.
R Facius G Reitz M Schafer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):1027-1038
For radiobiological experiments in space, designed to investigate biological effects of the heavy ions of the cosmic radiation field, a mandatory requirement is the possibility to spatially correlate the observed biological response of individual test organisms to the passage of single heavy ions. Among several undertakings towards this goal, the BIOSTACK experiments in the Apollo missions achieved the highest precision and therefore the most detailed information on this question. Spores of Bacillus subtilis as a highly radiation resistant and microscopically small test organism yielded these quantitative results. This paper will focus on experimental and procedural details, which must be included for an interpretation and a discussion of these findings in comparison to control experiments with accelerated heavy ions. 相似文献
18.
C.T. Russell K.K. Khurana C.S. Arridge M.K. Dougherty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1310-1318
The study of planetary magnetospheres allows us to understand processes occurring in the Earth’s magnetosphere by showing us how these processes respond under different conditions. We illustrate lessons learned about the control of the size of the magnetosphere by the dynamic pressure of the solar wind; how cold plasma is lost from magnetospheres; how free energy is generated to produce ion cyclotron waves; the role of fast neutrals in a planetary magnetosphere; the interchange instability; and reconnection in a magnetodisk. Not all information flow is from Jupiter and Saturn to Earth; some flows the other way. 相似文献
19.
I V Gribovskaya I A Gladchenko G K Zinenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):93-97
Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed. 相似文献
20.
E Nasonova S Ritter T Fomenkova G Kraft 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):569-578
The cytogenetic effects of X-rays and Au ions were investigated in repair-proficient CHO-K1 cells and their radiosensitive mutant strain xrs5, which shows a defect in the rejoining of DNA double-strand breaks. Both cell lines were synchronized by mitotic shake off, irradiated in G1-phase with either 250 kV X-rays or 780 MeV/u Au ions (LET: 1150 keV/micrometer) and chromosome aberrations were analyzed in first post-irradiation metaphases. Isoeffective doses of X-rays for the induction of aberrant cells and aberrations per cell were about 14 times lower for xrs5 than for CHO-K1 cells. After high LET radiation the difference in the cytogenetic response of both cell lines was drastically diminished. Furthermore, the analysis of the aberration types induced by sparsely and densely ionizing radiation showed for both cell lines specific changes in the spectrum of aberration types as LET increases. The experimental results are discussed with respect to the different types of lesions induced by sparsely and densely ionizing radiation. 相似文献