共查询到9条相似文献,搜索用时 15 毫秒
1.
D.I. Kosenko S.I. Blinnikov K.A. Postnov P. Lundqvist E.I. Sorokina 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2705-2710
Time-dependent thermal X-ray spectra are calculated from physically plausible conditions around GRB. It is shown that account for time-dependent ionization processes strongly affects the observed spectra of hot rarefied plasma. These calculations may provide an alternative explanation to the observed X-ray lines of early GRBs afterglows (such as GRB 011211). Our technique will allow one to obtain independent constraints on the GRB collimation angle and on the clumpiness of circumstellar matter. 相似文献
2.
E. Pian P. Giommi L. Amati E. Costa J. Danziger M. Feroci M.T. Fiocchi F. Frontera C. Kouveliotou N. Masetti L. Nicastro E. Palazzi L. Piro M. Tavani J.J.M. in t Zand 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2711-2714
The error box of GRB980425 has been observed by XMM-Newton in March 2002, with the aim of measuring the late epoch X-ray emission of the supernova 1998bw and of clarifying its supposed association with the GRB itself. We present here the preliminary results obtained with the EPIC PN camera. Our observations confirm the association between SN 1998bw and GRB980425. The EPIC PN measurement of the SN 1998bw flux is significantly below the extrapolation of the power-law temporal trend fitted to the BeppoSAX points and implies a faster temporal decay. We propose different physical interpretations of the SN X-ray light curve, according to whether it is produced by one or more radiation components. 相似文献
3.
G. Tagliaferri F.M. Zerbi G. Chincarini G. Ghisellini M. Rodon E. Palazzi L.A. Antonelli P. Conconi S. Covino G. Cutispoto E. Molinari L. Nicastro G. Tosti 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2739-2743
Observations of the prompt afterglow of γ-ray burst events are unanimously considered of paramount importance for GRB science and cosmology. Such observations at NIR wavelengths are even more promising allowing the monitoring of high-z Ly- absorbed bursts as well as events occurring in dusty star-forming regions. In these pages we present rapid eye mount (REM), a fully robotized fast slewing telescope equipped with a high throughput NIR (Z, J, H, K) camera dedicated to detecting the prompt IR afterglow. REM can discover objects at extremely high redshift and trigger large telescopes to observe them. The REM telescope will simultaneously feed REM optical slitless spectrograph (ROSS) via a dichroic. ROSS will intensively monitor the prompt optical continuum of GRB afterglows. The synergy between the REM-IR camera and the ROSS spectrograph makes REM a powerful observing tool for any kind of fast transient phenomena. Beside its ambitious scientific goals, REM is also technically challenging since it represent the first attempt to locate a NIR camera on a small telescope providing, with ROSS, unprecedented simultaneous wavelength coverage on a telescope of this size. 相似文献
4.
J. Craig Wheeler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2744-2749
A summary is given of the presentations at the COSPAR workshop on γ-ray bursts with some personal commentary on the contributions, the SN/GRB connection, and on the role of magnetic fields in γ-ray bursts and their afterglows. Of special interest were the accumulated arguments for strong collimation and associated reduction in the total required energy for γ-ray bursts. Significant discussion was also devoted to the issues associated with iron and metal lines in X-ray spectra. It is important to note that some of the afterglows seem to require ambient densities 1 g cm−3, rather incompatible with a massive star environment. Of associated difficulty is the fact that few, if any, afterglows seem consistent with the r−2 wind expected for a massive star model. There are reasons to think that if γ-ray bursts are associated with supernovae they are of Type Ic. This suggests that any wind present might be rich in carbon and oxygen, not hydrogen or helium. If γ-ray bursts are narrowly collimated, then the burst is only probing a small portion of any wind, perhaps just that time-dependent and isotropic structure directly along the rotation axis. The characteristics of “hypernovae” may be the result of orientation effects in a mildly inhomogeneous set of progenitors, rather than requiring an excessive total energy or luminosity. The recent event GRB 021004 provided a rich photometric and spectroscopic record and perhaps the most direct evidence yet for the association of a specific γ-ray burst with a massive star progenitor. If the magnetic field plays a significant role in launching a relativistic γ-ray burst jet from within a collapsing star, then the magnetic field may also play a role in the propagation, collimation, and stability of that jet within and beyond the star. The magneto-rotational instability (MRI) can operate under conditions of moderate rotation. This means that the MRI will be at work generating strong fields exponentially rapidly even as the disk of material begins to form and makes a transition from a non-Keplerian to quasi-Keplerian flow in the collapsar and related models. 相似文献
5.
P. Ubertini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2964-2969
INTEGRAL is the ESA lead International Gamma-Ray Astrophysical Laboratory, successfully launched the 17th October 2002 from Baikonur with a Proton vehicle. In view of the high sensitivity of the two γ-ray instruments IBIS and SPI and their capability to provide at the same time image, spectra and time profiles of all the sources in their wide field of view, a key project was approved as “Core Programme” to obtain deep observations of the Galactic Centre (GCDE) and to exploit regular scan of the whole Galaxy Plane since the beginning of the mission. This paper will briefly review the main astrophysical results obtained in the field of high energy Galactic sources with the INTEGRAL/IBIS γ-ray Imager onboard INTEGRAL, and make a comparison with the previous scenario depicted by the BeppoSAX and RXTE results. 相似文献
6.
F. Capitanio A. Bazzano P. Ubertini G. De Cesare M. Del Santo A. Tarana A. Joinet 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2816-2819
On March 2003, IBIS, the γ-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be an HEAO-1 transient, namely H1743-322. The spectral and temporal evolutions of the source were observed by INTEGRAL in different periods. Also RXTE observed the source for the first time on 2003 March 29 during a PCA Galactic bulge scan. The source flux decayed below the RXTE PCA sensitivity limit in November 2003, then in April 2004 it was again detected by INTEGRAL. On July 3, 2004 the source was again detected by RXTE/PCA at a 2–10 keV intensity of 16 mCrab and on July 7, reached 69 mCrab. Recently, a new outburst was observed on August 2005. We briefly summarise here the behaviour of the source observed by INTEGRAL from March 2003 to August 2005. The new outbursts of the source and the analysis of all the data collected (now public) give a global view of the spectral and time behaviour of this X-ray transient. 相似文献
7.
Ayodeji Ashidi Joseph Ojo Adekunle Adediji Oludare Ajewole 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(5):1612-1622
Existing amplitude scintillation prediction models often perform less satisfactorily when deployed outside the regions where they were formulated. This necessitates the need to evaluate the performance of scintillation models developed in one region using data data from other regions while documenting their relative errors. Due to its variation with elevation angle, frequency, other link parameters and meteorological factors, we employed three years (January 2016 to December 2018) of concurrently measured satellite radio beacons and tropospheric weather parameters to develop a location-based amplitude scintillation prediction model over the Earth-space path of Akure (7.17oN, 5.18oE), South-western Nigeria. The satellite beacon measurement used Tektronix Y400 NetTek Analyzer at 1 s integration time while meteorological parameters, namely; temperature, pressure and relative humidity were measured using Davis Vantage Vue weather station at 1 min integration time. Comparative study of the model’s performance with nine (9) existing scintillation prediction models indicates that the best and worst performing models, in terms of root mean square error (RMSE), are the Statistical Temperature and Refractivity (STN) and direct physical and statistical prediction (DPSP) models with values 11.48 and 51.03 respectively. Also, worst month analysis indicates that April, with respective enhancement and fade values of 0.88 and 0.90 dB for 0.01% exceedance, is the overall worst calendar month for amplitude scintillation. 相似文献
8.
径向圆跳动误差的最小二乘评定数学模型和微机数据处理 总被引:2,自引:1,他引:2
用传统的测量方法只能得到被测零件的径向圆跳动误差的近似值。为了得到该项误差的准确值,需要研究新的测量方法。建立了径向圆跳动误差最小二乘评定数学模型,并编制了高级语言数据处理程序。在万能工具显微镜上获得了采样数据,给出了计算结果。 相似文献
9.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(5):661-667
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with hourly time interval resolution for the diurnal variation, obtained with DPS-4 digisonde observations at Hainan (19.4°N, 109.0°E) are used to study the low latitude ionospheric variation behavior. The observational results are compared with the International Reference Ionospheric Model (IRI) predictions. The time period coverage of the data used for the present study is from March 2002 to February 2005. Our present study showed that: (1) In general, IRI predictions using CCIR and URSI coefficients follow well the diurnal and seasonal variation patterns of the experimental values of foF2. However, CCIR foF2 and URSI foF2 IRI predictions systematically underestimate the observed results during most time period of the day, with the percentage difference ΔfoF2 (%) values changing between about −5% and −25%, whereas for a few hours around pre-sunrise, the IRI predictions generally overestimate the observational ones with ΔfoF2 (%) sometimes reaching as large as ∼30%. The agreement between the IRI results and the observational ones is better for the year 2002 than for the other years. The best agreement between the IRI results and the observational ones is obtained in summer when using URSI coefficients, with the seasonal average values of ΔfoF2 (%) being within the limits of ±10%. (2) In general, the IRI predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the observational results. However, when using the measured M(3000)F2 as input, the diurnal variation pattern of hmF2 given by IRI2001 has a much better agreement with the observational one with the detailed fine structures including the pre-sunrise and post-sunset peaks reproduced reasonably well. The agreement between the IRI predicted hmF2 values using CCIR M(30,000)F2 option and the observational ones is worst for the afternoon to post-midnight hours for the high solar activity year 2002. During daytime hours the agreement between the hmF2 values obtained with CCIR M(30,000)F2 option and the observational ones is best for summer season. The discrepancy between the observational hmF2 and that obtained with CCIR M(30,000)F2 option stem from the CCIR M(3000)F2 model, which does not produce the small scale structures observed in the measured M(3000)F2. 相似文献