首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This work aims to investigate local stress distribution, damage evolution and failure of notched composite laminates under in-plane loads. An analytic method containing uniformed boundary equations using a complex variable approach is developed to present layer-by-layer stresses around the notch. The uniformed boundary equations established in series together with conformal mapping functions are capable of dealing with irregular boundary issues around the notch and at infinity. Stress results are employed to evaluate the damage initiation and propagation of notched composites by progressive damage analysis(PDA). A user-defined subroutine is developed in the finite element(FE) model based on coupling theories for mixed failure criteria and damage mechanics to efficiently investigate damage evolution as well as failure modes. Carbon/epoxy laminates with a stacking sequence of [45°/0°/ 60°/90°]sare used to investigate surface strains, in-plane load capacity and microstructure of failure zones to provide analytic and FE methods with strong validation. Good agreement is observed between the analytic method, the FE model and experiments in terms of the stress(strain) distributions, damage evaluation and ultimate strength, and the layerby-layer stress components vary according to a combination effect of fiber orientation and loading type, causing diverse failure modes in individuals.  相似文献   

2.
Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored using stiffness decay. From these tests, it is found that the initial delamination occurs at the free boundary of smooth specimens, or the notch boundary of notched specimens, subjected to the compression-compression cyclic load. A point of view in relation to two-phases of compression fatigue delamination of composites is proposed, namely, compression-compression delamination consists of the delamination formation phase and the delamination propagation, and there is a “damage transition point” to separate this two-phases. Furthermore, an empirical modulus degradation formula and its parameters fitting method are presented. According to the test data handling results, it is shown that this formula is univocal and can fit the test data conveniently. In addition, two kinds of new anti-buckling devices are designed for these tests. At last, the E-N curves, the D-N curves and the S-N curve of the smooth carbon fiber reinforced composite laminates of T300/648C are determined to predict the fatigue life of the notched composite laminate. And the E-N curve of the notched specimens at the given load ratio R=10 and minimum load Pmin=-0.45 kN is also measured to verify the estimated result of fatigue life.  相似文献   

3.
A new unified macro- and micro-mechanics failure analysis method for composite structures was developed in order to take the effects of composite micro structure into consideration. In this method, the macro stress distribution of composite structure was calculated by commercial finite element analysis software. According to the macro stress distribution, the damage point was searched and the micro-stress distribution was calculated by reformulated finite-volume direct averaging micromechanics (FVDAM), which was a multi-scale finite element method for composite. The micro structure failure modes were estimated with the failure strength of constituents. A unidirectional composite plate with a circular hole in the center under two kinds of loads was analyzed with the traditional macro-mechanical failure analysis method and the unified macro- and micro-mechanics failure analysis method. The results obtained by the two methods are consistent, which show this new method’s accuracy and efficiency.  相似文献   

4.
The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally. In the finite element analysis (FEA),virtual crack closure technique (VCCT) and B-K law were employed to simulate the delamination growth,and the contact of the two substrates was considered.The effect of the delamination size and through-thickness position on the compressive behavior of laminates with an artificially embedded circular delamination was discussed.It is found that the through-thickness position affects the buckling mode,which then strongly influences delamination growth speed and direction,as well as the dominant component energy release rate (ERR).The numerical results agreed well with the experimental results.   相似文献   

5.
This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper.  相似文献   

6.
Effect of Stitching on Plain and Open-hole Strength of CFRP Laminates   总被引:1,自引:0,他引:1  
 Experimental and analytical investigation is conducted to explore the effects of stitching on plain (without hole) and open-hole compressive and tensile strength of uniweave T300/QY9512 laminates under different environmental conditions (20 篊/dry and wet, 150 篊/dry and wet). Strength performance of stitched composite laminates is also studied using finite element analysis (FEA) model and compared with the experimental results to validate the model. It is found that under similar environmental conditions, the open-hole compressive strength of stitched laminate is decreased and open-hole tensile strength increased as compared to the unstitched laminates. Predicted tensile and compressive strengths are found to be in a good agreement with the test results and the relative error in all cases is less than 15%.  相似文献   

7.
Large numbers of aircraft composite structures were researched, and the distribution of delamination sizes and though thickness positions in the composite laminates were investigated. An experiment was conducted to probe into the effect of delamination sizes and through thickness positions on the compressive strengths of laminates with single embedded circular delamination with the most dangerous delamination sizes and positions defined from the distribution. A shell model was established for compressive strength prediction, and the virtual crack closure technique (VCCT) was employed for the strain energy release rate calculation. The finite element (FE) prediction was in good agreement with the experimental measurements, for the predicted compressive strengths stood within 10% error of experimental results. It was observed that the compressive strength was highly effected by the delamination size, while the though thickness position of delamination did not have significant effect on the compressive strength.   相似文献   

8.
The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects. The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite structural frequency constraint optimization is revealed.  相似文献   

9.
The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. Numerical examples for the reliability design optimization (RDO) of a laminate and a composite cylindrical shell are worked out to demonstrate the effectiveness of the method. Then a design for composite pressure vessels is studied. The advantages and necessity of RDO over the conventional equi-strength design are addressed. Examples show that the proposed method has good stability and is efficient in dealing with the probabilistic optimal design of composite structures. It may serve as an effective tool to optimize other complicated structures with uncertainties.  相似文献   

10.
As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.  相似文献   

11.
宋丹龙  张开富  钟衡  李原 《航空学报》2016,37(5):1677-1688
复合材料层合板的干涉配合连接具有优越的性能,是飞机复合材料结构连接的发展趋势。然而,层合板在干涉连接过程中易出现分层损伤。针对以上问题,采用理论建模与有限元模拟方法研究了碳纤维增强树脂基复合材料(CFRP)层合板干涉螺接过程中的分层损伤及其临界干涉量。首先,对CFRP层合板的干涉螺接工艺过程和分层损伤进行力学行为分析;然后,基于虚功原理,建立了各层界面的分层损伤临界轴向力计算模型,结合插钉力与干涉量间的关系,建立临界干涉量的预测模型,求得分层损伤的临界干涉量;最后,采用ABAQUS有限元软件对CFRP层合板干涉螺接过程进行数值模拟,应用内聚力单元建立层合板层间界面,模拟了CFRP层合板在不同干涉量时的分层损伤机理,并通过扫描电子显微镜(SEM)实验观测了细观分层损伤。研究结果显示:干涉量是影响CFRP层合板分层损伤的主要工艺参数;层合板中越靠下边的层间界面,其不产生分层损伤的临界轴向力和临界干涉量越小,即越容易产生分层损伤。  相似文献   

12.
以国产碳纤维复合材料CCF300/QY8911含孔层合板静力拉伸试验为基础,建立了符合其损伤失效模式的有限元三维预测模型.通过引入Cohesive界面单元分析了层合板拉伸过程中的分层扩展,数值模拟的结果与试验结果吻合较好,破坏载荷预测结果与试验数据相比误差在5%以内.根据CCF300复合材料构件在制造过程和实际使用中产生的孔边分层缺陷的情况,在孔边预置分层,分析了初始分层损伤对于层合板剩余强度的影响.结果表明表面预制分层对剩余强度影响较小,但会引起自由边提前分层失效.   相似文献   

13.
含分层损伤复合材料层合板振动特性   总被引:1,自引:0,他引:1  
针对复合材料层合板分层损伤区域上、下子板的畸变模态,采用自定义矩阵单元模拟其损伤区的接触刚度,建立了一种合理的层合板分层损伤有限元振动分析模型;在此基础上研究了分层深度和分层大小对复合材料层合板振动特性的影响.数值模拟结果与实验结果的对比表明:采用的自定义矩阵单元可以有效地模拟层合板的分层损伤,模态计算值与实验值的最大误差为10.67%,最小误差为0.34%;分层深度和分层大小对复合材料层合板振动特性有较大影响,随分层深度变化,固有频率最多下降50%;随分层大小变化,前4阶固有频率最多下降12%.   相似文献   

14.
为了分析复合材料层板疲劳分层扩展行为,基于Abaqus有限元分析平台,建立分层扩展复合材料层板有限元分析模型。选用基于能量释放率的分层扩展判据,结合剩余强度模型弱化材料性能,引入VUMAT用户子程序实现模型疲劳损伤失效的判断及材料刚度性能的折减,模拟含分层复合材料层板在疲劳压缩载荷作用下的分层扩展行为。结果表明:分层长度随着疲劳载荷地施加不断增大,但扩展速率逐渐减小,最终分层长度达到稳定值,与实验结果吻合良好。  相似文献   

15.
阎相桥  杜善义  王铎 《航空学报》1991,12(4):183-185
1.问题的提出 层板脱层是复合材料主要破坏模式之一;Wang等人认为基本上是断裂问题。一般均假定复合材料层板脱层开裂是基体控制的,在复合型开裂作用下的能量释放率G为各个单一型开裂作用下的能量释放率G_Ⅰ、G_Ⅱ和G_Ⅲ的代数和 G=G_Ⅰ+G_Ⅱ+G_Ⅲ (1)从下列的研究结果可看出上式有一定的不合理性。  相似文献   

16.
将二维机织碳布和单向碳布预浸料按照一定比例铺设成的混合机织复合材料兼具比刚度、比强度高、抗低速冲击损伤以及工艺性好等优点.采用基于三维非协调层合元的动力学有限元分析方法,对由二维机织缎纹碳布和单向碳布混合铺设而成的复合材料层合板进行了低速冲击有限元计算分析.针对二维机织碳布的特殊力学性质,提出了修正的分层扩展判据,建立了低速冲击损伤面积的分析方法.在不同冲击能量下,针对不同铺层结构和厚度的计算结果与试验结果皆吻合的很好.分析结果表明,由于分层破坏机理不同,加入机织铺层后能够有效降低低速冲击导致的分层损伤.  相似文献   

17.
缝纫层合板低速冲击损伤有限元分析   总被引:2,自引:1,他引:2  
 采用动态有限元素法,计算并研究了缝纫层合板在低速冲击下的损伤情况。研究结果表明 :缝纫后层间剪切强度的增加是缝纫层合板抗冲击分层性能改善的主要原因。试验结果也表明,模拟计算结果与试验结果具有良好的一致性。  相似文献   

18.
缝纫层合板压缩性能研究   总被引:1,自引:0,他引:1  
试验研究了有、无缝纫层合板的压缩强度和破坏机理。通过有限元方法分析了缝纫参数对缝纫层合板压缩性能的影响。研究结果表明,缝纫层合板以折皱断裂为主要压缩破坏模式,分层损伤得到了有效的抑制,缝纫参数对压缩强度有一定的影响,计算模型与试验结果吻合得较好。  相似文献   

19.
对层压板进行强度分析时同时考虑面内失效和分层损伤可以得到更加合理的强度预测值。基于复合材料层压板分层机理分别采用Hashin准则和分层因子进行面内损伤和分层损伤的计算,并结合材料性能退化发展了一种能够考虑分层损伤的层压板累积损伤模型。该模型能够模拟层压板面内和分层损伤产生、发展直至最终破坏的完整过程。通过对两种典型复合材料层压板单钉连接接头的失效分析,表明计算结果与传统三维有限元计算结果相比精度较高,并能有效预测各层间分层损伤的扩展情况。  相似文献   

20.
针对飞机复合材料加筋层压板结构,设计了含有预埋分层缺陷的复合材料加筋层压板的典型试验件以及压缩试验装置,研究了分层缺陷位置和大小对加筋板压缩强度的影响。研究结果表明:分层缺陷会改变加筋板的破坏模式,浅表分层在压缩过程中表现为局部屈曲模态,局部屈曲强度只有其破坏强度的30%~60%,分层直径增加,局部屈曲强度降低。局部屈曲发生后,加筋板尚可进一步承载,直至层板失稳破坏。本文给出的数据和结论对实际飞机结构设计的参数确定和生产过程中的超差问题处理具有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号