首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When a parallel resonant tank is excited by a bipolar current pulse train a sinusoidal voltage develops across the tank whose amplitude depends on the duty cycle of the pulse train. An isolated secondary can be derived by applying the tank voltage to an isolation transformer whose magnetizing inductance acts as the resonant inductor of the tank circuit. A dc output voltage is obtained after rectification and filtering of the sinusoidal secondary voltage and regulation is achieved by controlling the duty cycle of the pulse train. The sinusoidal nature of the voltage across the isolation transformer alleviates some of the noise problem associated with parasitic capacitances of an isolation transformer when operated with square voltage waveform. In this work the dc and small-signal analysis of the converter is given and an equivalent small-signal circuit model is derived. Experimental results which confirm the validity of the model are presented.  相似文献   

2.
A buck converter operating at constant switching frequency, whose active switches and recovery diode commutate at zero-voltage-switching (ZVS), with zero capacitive turn-on losses, is proposed. By using the parasitic capacitances of the switches as resonant capacitors, multiresonance is created. The resonant stage takes place only after the resonant inductor has been discharged, thus avoiding a resonant current peak; the devices are subjected to the same stresses as their counterparts in conventional hard-switching converters. A high efficiency is obtained.  相似文献   

3.
Generally, good transient response and high conversion efficiency of a field-weakened indirect field-oriented (IFO), induction motor drive are difficult to obtain simultaneously owing to their contradictory behaviors. Moreover, its operating performance is quite sensitive to the flux level, detuned effect, and parameter variations. An improved field-weakening control approach for an IFO induction motor drive is developed here. In the proposed method, the saturated magnetizing inductance is represented by a fitted quadratic polynomial of flux current. And the normal d-axis flux current command is composed of a no-load, a load-compensating, and a transient compensating component. The first one is represented by a third-order polynomial of rotor speed, which is estimated at no-load to consider the effects of nonlinear magnetizing inductance and the limitation of motor rated voltage. As for the latter two compensating current command components, they are utilized to further weaken the field such that current tracking performances during loaded cases and transient period can be improved. And hence the torque-generating capability is also enhanced accordingly. During steady-state operation, the slip angular speed command or the flux current command is tuned using the proposed approach to let the motor quickly reach a stable operating condition with better efficiency. Experimental results show that good dynamic responses and better energy conversion efficiencies can be simultaneously obtained by the proposed field-weakening control method.  相似文献   

4.
A resonant switch-mode power supply for the microwave electrothermal thruster (MET) is presented in this paper. The converter is operated with soft-switching at high frequency and exhibits a high efficiency. The soft switching technique used in this converter and the current-source inductor at the input minimize the EMI noise. Electric isolation between input and output is achieved with a center-tap transformer, whose magnetizing inductance is used as the resonant inductance of its resonant tank. The resulting high power density and increased reliability of the converter make it very suitable for aerospace applications. Simulation and experimental results of a 28 V/4.5 kV example are also presented  相似文献   

5.
Six modes of operation for the push-pull 4c-to-dc converter are presented by taking into account the magnetizing current of the transformer. If the inductance of the transformer is decreased, the region where the output voltage is abnormally high is expanded in the load characteristics.  相似文献   

6.
It is shown that the common series resonant power converter is subject to a low frequency oscillation that can lead to the loss of cyclic stability. This oscillation is caused by a low frequency resonant circuit formed by the normal L and C components in series with the magnetizing inductance of the output transformer. Three methods for eliminating this oscillation are presented and analyzed. One of these methods requires a change in the circuit topology during the resonance cycle. This requires a new set of steady state equations which are derived and presented in a normalized form. Experimental results are included which demonstrate the nature of the low frequency oscillation before cyclic stability is lost.  相似文献   

7.
Suitability of pulse train control technique for BIFRED converter   总被引:1,自引:0,他引:1  
Pulse Train/spl trade/ control scheme is presented and applied to a boost integrated flyback rectifier/energy storage dc-dc (BIFRED) converter operating in discontinuous conduction mode (DCM), which avoids the light-load high-voltage stress problem. In contrast to the conventional control techniques, the principal idea of Pulse Train technique is to regulate the output voltage using a series of high and low energy pulses generated by the current of the inductor. The applicability of the proposed technique to both the input and magnetizing inductances of BIFRED converter is investigated. Analysis of BIFRED converter operating in DCM as well as the output voltage ripple estimation is given. Experimental results on a prototype converter are also presented.  相似文献   

8.
A design algorithm is considered for transformers that must transfer electric power across a rotating interface. Among other features, this procedure allows the designer to minimize either weight or losses for either a fixed magnetizing inductance or a fixed leakage inductance. Numerical results are included to indicate the design tradeoffs between various parameters.  相似文献   

9.
《中国航空学报》2023,36(7):420-429
In this paper, a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft (MEA) is proposed. The proposed converter consists of a basic Cuk converter module and n expandable units. By adjusting the operation state of the expandable units, the voltage conversion gain of the proposed converter could be regulated, which makes it available for wide voltage conversion applications. Especially, since mutual redundancy can be realized between the basic Cuk converter module and the expandable units, the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter, which reflects the fault tolerance of the converter and significantly improves the reliability of the system. Moreover, the advantages of small input current ripple, automatic current sharing and low voltage stress are also integrated in this converter. The working principle and features of the proposed converter are mainly introduced, and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.  相似文献   

10.
In this paper, the small signal analysis of the LCC-type parallel resonant converter (LCC-PRC) operating in the continuous conduction mode is given. This analysis is based on both the state-plane diagram, which has been successfully used to obtain the steady state response for resonant converters, and the Taylor series expansion. Applying perturbation directly to the steady state trajectory, a discrete small signal model for the converter can be derived in terns of the input voltage, switching frequency, and the converter state variables. Based on this analysis, closed-loop form solutions for the input-to-output and control-to-output transfer functions are derived. It is shown that the theoretical and computer simulation results are in full agreement  相似文献   

11.
For pt.I see ibid., vol.26, no.3, p.490-6 (1990). According to the method of state-space averaging, when a pulsewidth modulation (PWM) converter enters discontinuous conduction mode (DCM), the inductor current state is lost from the average model of the converter. It is shown that there is neither theoretical nor experimental justification for the disappearance of the inductor state as claimed by the method of state-space averaging. For example, when the model of the PWM switch in DCM is substituted in the buck, boost, or buck-boost converter while the inductor is left intact, the average model has two poles: the first pole fp1 agrees with the single pole of state-space averaging, while the second pole fp2 occurs in the range fp2Fs/π. It is shown that the right-half plane zeros present in the control-to-output transfer functions of the boost, buck-boost, and Cuk converters in continuous conduction mode are also present in discontinuous conduction mode  相似文献   

12.
The state-plane analysis technique is established for the zero-voltage-switching resonant DC/DC power converter family of topologies, namely the buck, boost, buck-boost, Cuk, sepic, and dual-sepic converters. The state plane provides a compression of information, which allows the designer to examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, modes of resonant converter operation are examined. Expressions are derived for the switching frequencies at the boundaries between these modes and at the boundary of energy conversion  相似文献   

13.
New material technologies such as Silicon Carbide (SiC) are promising in the development of compact high-power converters for next-generation power electronics applications. This paper presents an optimized converter design approach that takes into consideration non-linear interactions among various converter components, source and load. It is shown that with the development of high-temperature, high-power SiC power module technology, magnetic components and capacitors become important technology challenges, and cannot be ignored. A 50% improvement in power density is calculated for a 100 V-2 kV, 7 kW SiC DC-DC power converter operating at 150°C compared to a silicon power converter. The SiC power converter can be operated at junction temperatures in excess of 300°C (as compared to 150°C for a silicon power converter) with reasonable efficiency that potentially leads to a significant reduction in thermal management  相似文献   

14.
A design goal for miniaturization has long been the elimination of the magnetic circuit. In practice, the size/weight penalties are decreased by operation at higher frequency where core size can be effectively reduced. When microcircuitry is considered, the magnetic circuit is designed out. Either RC or active networks replace inductance, or it is externally added to the microcircuit. This paper will demonstrate that the microcircuit elements can be readily interconnected inside of ferrite pot cores. Linear circuits using the magnetic circuit to advantage can be packaged in the same volume as the transformer, inductance, or filter alone. The natural RFI and radiation shielding, as well as heat transfer capabilities, are inherent with this form of packaging. For illustration, a 2-kV, 20-?A power supply featuring a 60-kHz, class C oscillator; a 10-volt, 100-mA converter featuring a 300-kHz square-wave oscillator; and a 9.5-volt, 100-mA switching regulator are packaged inside ferrite pot cores. With this technique only functional input-output connections are necessary, since the microcircuitry interconnections are inside the pot core.  相似文献   

15.
For a given output voltage and power, the peak resonant capacitor voltage and peak inductor and switch currents of the series resonant converter depend strongly on the choice of transformer turns ratio and of tank inductance and capacitance. In this paper the particular component values which result in the smallest component stresses are determined, and a simple design strategy is developed. The procedure is illustrated for an off-line 200 W, 5 V application, and it is shown that an incorrect choice of component values can result in significantly higher component stresses than are necessary.  相似文献   

16.
Alternate forms of the PWM switch models   总被引:1,自引:0,他引:1  
Vorperian's pulsewidth modulation (PWM) switch model consists of a PWM transformer and a nonlinear resistor. The recognition that any of the three transformer terminals can serve as the common terminal leads to two alternate PWM transformer models and the corresponding two alternate PWM switch models. For a given PWM dc-dc converter, one of the three PWM switch models is more “natural” for graphic-oriented analysis/design, e.g., it allows the idealized converter to be analyzed by inspection. Furthermore, all three PWM transformers may be used to graphically manipulate the converter circuit to a form that can be analyzed by inspection. The alternate forms of the PWM transformers and the PWM switch models are effective as graphic-oriented teaching and learning tools for PWM converters. This is demonstrated using examples based on the boost converter and the Cuk converter  相似文献   

17.
为探究低展弦比压气机转子在风车状态下由压气机模式向涡轮模式转化过程中性能、内部流场结构以及气动损失的演化过程,提出了一种基于叶片和流体间能量传递的简化数值计算方法,以获得某转速下的风车状态临界流量点。在数值模拟的基础上,重点对比了同一转速线上压气机工况点(小流量工况)、风车临界点和涡轮工况点下叶尖泄漏损失的演化机制,同时探究了叶片通道内流动分离的演化过程。 结果显示,随着转速的增加,转子风车状态临界流量呈现近似线性的变化趋势。而同转速下随流量增大,叶尖泄漏流从吸力面流向压力面,并与压力面上的低能量流体进行掺混,造成了流动堵塞。同时,从压气机模式转向涡轮模式的过程中,叶尖区域的流动分离从吸力面分离转变为压力面分离,随后分离强度和尺寸逐渐增大,造成的气动损失显著增加;而在轮毂区域,流动分离始终保持吸力面分离,其分离尺度沿径向有所发展。  相似文献   

18.
The voltage-current characteristic of solar cells that provide power for a spacecraft can vary over a wide range. For maximum power transfer from the solar cells to the battery system a power converter has to be designed that adjusts its input impedance to a value equal to the output impedance determined by the operating power characteristic of the solar cells. This paper discusses a circuit and calculations for a design to match this condition. The proposed power converter is simple, lightweight, and reliable and will be used in the Sunblazer satellite.  相似文献   

19.
数模转换器(DAC)是全数字闭环光纤陀螺反馈通道的重要部件,DAC的毛刺特性会对光纤陀螺的调制解调结果产生影响.基于DAC中值毛刺特性建立了光纤陀螺反馈回路的非理想调制方波模型,分析了调制频率与本征频率不同时DAC毛刺在干涉信号中产生的各类周期干扰信号.利用周期干扰信号的Fourier级数推导出了DAC毛刺造成调制解调误差的数学模型,仿真分析了数模转换器毛刺的宽度、高度,光纤陀螺调制频率、本征频率及放大电路的增益带宽对陀螺解调误差的影响.最后,通过开环实验验证了DAC毛刺对光纤陀螺调制解调的影响.  相似文献   

20.
Analysis based on the state-plane diagram is given for series resonant converters operating in the frequency range 0.5 ? fs/fo ? 1.0. When the voltages and currents in the converter are normalized, design parameters take on special geometric meanings in the normalized state diagram. Examples of converter design using graphical methods are given for the cases of ? and ? control. Control characteristics of the converter operating in the continuous conduction mode are derived. The concept of the energy reflection coefficient is introduced as a measure of power transfer efficiency in the converter design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号