首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 12C/13C, 16O/18O, 14N/15N, 32S/34S ratios in dust and gases, and discuss their cosmogonic implications. The prospects for future measurements from cometary space missions and remote sensing observations at millimeter and submillimeter wavelengths are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
It is well established that the prolonged and thorough mixing of numerous nucleosynthetic components that constitutes the matter in the solar nebula resulted in an essential isotopic homogeneity of the solar system material. This may or may not be true for the short-lived radionuclides which were injected into or formed within the solar nebula just prior to or during solar system formation. Distinguishing between their heterogeneous or homogeneous distribution is important because the short- lived radionuclides are now widely used for the relative chronology of various objects and processes in the early solar system and as constraints for models of nucleosynthesis. The recent studies of the 53Mn-53Cr isotope system (half life of 53Mn is 3.7 Ma) in various solar system objects have shown that the relative abundance of radiogenic 53Cr is consistent with essentially homogeneous distribution of 53Mn in the asteroid belt. Thus, the relative 53Mn-53Cr chronometer can be directly used for dating samples which originated in the asteroid belt. Importantly, however, all meteorite groups studied so far indicate a clear excess of 53Cr as compared to Earth and to a lunar sample, which exhibits also a terrestrial 53Cr/52Cr ratio. The results from the Martian (SNC) meteorites show that their 53Cr excesses are less than half of those found in the asteroid belt bodies. Thus, the characteristic 53Cr/52Cr ratio of Mars is intermediate between that of the Earth-Moon system and those of the other meteorites. If these 53Cr variations are viewed as a function of the heliocentric distance, the radial dependence of the relative abundances of radiogenic 53Cr is indicated. This observed gradient can be explained by either an early, volatility controlled, Mn/Cr fractionation within the nebula or by an initial radial heterogeneous distribution of 53Mn. Although model calculations of the Mn/Cr ratios in the bulk terrestrial planets seem to be inconsistent with the volatility driven scenario, the precision of these calculations is inadequate for eliminating this possibility. In contrast, recent studies of the 53Mn-53Cr system in the enstatite chondrites indicate that, while their bulk Mn/Cr ratios are essentially the same as in ordinary chondrites, the 53Cr excess in bulk enstatite chondrites is three times lower than that in the bulk ordinary chondrites. This difference cannot be explained by a Mn/Cr fractionation and, thus, strongly suggests that a radial heterogeneous distribution of 53Mn must have existed in at least the early inner solar system. Using the observed gradient and the 53Cr/52Cr ratio of the bulk enstatite chondrites, their parent body(ies) formed at ∼1.4 AU or somewhat closer to the Sun. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The Sun is the largest reservoir of matter in the solar system, which formed 4.6 Gyr ago from the protosolar nebula. Data from space missions and theoretical models indicate that the solar wind carries a nearly unfractionated sample of heavy isotopes at energies of about 1 keV/amu from the Sun into interplanetary space. In anticipation of results from the Genesis mission’s solar-wind implanted samples, we revisit solar wind isotopic abundance data from the high-resolution CELIAS/MTOF spectrometer on board SOHO. In particular, we evaluate the isotopic abundance ratios 15N/14N, 17O/16O, and 18O/16O in the solar wind, which are reference values for isotopic fractionation processes during the formation of terrestrial planets as well as for the Galactic chemical evolution. We also give isotopic abundance ratios for He, Ne, Ar, Mg, Si, Ca, and Fe measured in situ in the solar wind.  相似文献   

4.
This paper briefly reviews a few relevant features about the abundances of light elements (D, 4He, 6Li, 7Li, 9Be) in the Milky Way. It places special emphasis on metal-poor stars. Observational concerns are discussed. The use of 7Li and 6Li as cosmological probes and of 9Be as a chronometer for the early evolution of our Galaxy are discussed.  相似文献   

5.
After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ∼constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed “Spite-plateau” in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early “6Li plateau”, which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.  相似文献   

6.
Now extinct short-lived radioactive isotopes were apparently extant in the early solar system. Their abundances can be inferred from isotopic effects in their daughter nuclei in primitive meteorites, and the deviation of these abundances from expectations from continuous galactic nucleosynthesis yields important information on the last nucleosynthetic events that contributed new nuclei to the solar system and on the general circumstances of the Sun's birth. In this paper we present a rudimentary model that attempts to reconcile the abundances of ten short-lived radioactivities in the early solar system. In broad outlines, the picture requires 1) that Type Ia supernovae maintained a steady ISM supply of 53Mn and 146Sm, 2) that the r-process events that slowly admixed new 107Pd, 129I, 182Hf, and 244Pu nuclei to the solar system occurred over an interval of several hundred million years prior to solar system formation, and 3) that a massive star, by injecting only material outside its helium-exhausted core into the proto-solar nebula, contributed 26Al, 36Cl, 41Ca, 60Fe, and 182Hf no more than one million years prior to the Sun's birth. In this picture, the live 182Hf present in the early solar system was not due to r-process production but rather to a fast s-process in helium or carbon burning shell in the massive star. We conclude with a possible chemical-memory explanation for the putative 53Cr/52Cr gradient in the solar system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
We present measurements of energetic hydrogen and oxygen atoms (ENAs) on the nightside of Mars detected by the neutral particle detector (NPD) of ASPERA-3 on Mars Express. We focus on the observations for which the field-of-view of NPD was directed at the nightside of Mars or at the region around the limb, thus monitoring the flow of ENAs towards the nightside of the planet. We derive energy spectra and total fluxes, and have compiled maps of hydrogen ENA outflow. The hydrogen ENA intensities reach 105 cm−2 sr−1 s−1, but no oxygen ENA signals above the detection threshold of 104 cm−2 sr−1 s−1 are observed. These intensities are considerably lower than most theoretical predictions. We explain the discrepancy as due to an overestimation of the charge-exchange processes in the models for which too high an exospheric density was assumed. Recent UV limb emission measurements (Galli et al., this issue) point to a hydrogen exobase density of 1010 m−3 and a very hot hydrogen component, whereas the models were based on a hydrogen exobase density of 1012 m−3 and a temperature of 200 K predicted by Krasnopolsky and Gladstone (1996). Finally, we estimate the global atmospheric loss rate of hydrogen and oxygen due to the production of ENAs.  相似文献   

8.
Observations and measurements in the solar wind, the Jovian atmosphere and the gases trapped in lunar surface material provide the main evidence from which the isotopic composition of H, He and Ne in the Protosolar Cloud (PSC) is derived. These measurements and observations are reviewed and the corrections are discussed that are needed for obtaining from them the PSC isotopic ratios. The D/H, 3He/4He (D+3He)/H, 20Ne/22Ne and 21Ne/22Ne ratios adopted for the PSC are presented. Protosolar abundances provide the basis for the interpretation of isotopic ratios measured in the various solar system objects. In this article we discuss constraints derived from the PSC abundances on solar mixing, the origin of atmospheric neon, and the nature of the “SEP” component of neon trapped at the lunar surface. We also discuss constraints on the galactic evolution provided by the isotopic abundances of H and He in the PSC. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
应用基于压电超声疲劳试验技术开发的20kHz弯曲疲劳试验系统,完成了室温下TC17合金超高周疲劳试验.结果表明:在疲劳循环大于107周次时,试样仍会发生疲劳断裂,疲劳强度随循环次数的增加而下降,并不存在明显的疲劳极限.TC17合金的应力-寿命(S-N)曲线在107~109周次的范围内为连续下降型.光学显微镜发现,TC17合金的疲劳破坏主要起源于试样表面.当存在夹杂物时,疲劳裂纹从距离表面很近的夹杂物处萌生,能谱分析表明夹杂物的成分主要是铝的氧化物.   相似文献   

10.
Large underground (underwater) detectors (such as ‘Baikal’ and DUMAND) are discussed for their possible use as gamma-ray telescopes. The signal is caused by high-energy muons (E μ ? 30–100 TeV) produced by the primary gamma-radiation in the Earth's atmosphere. The production of gamma-rays in the source through the reaction p + pπ 0 + X is calculated for a low density target of arbitrary thickness taking the electromagnetic cascade into account. The muon production by gamma-rays in the Earth's atmosphere is calculated using three processes: (i) photoproduction of π- and K-mesons followed by decay to muons, (ii) the direct production of μ+ μ?-pairs: γ + Z → Z + μ + + μ?, and (iii) photoproduction of charmed particles. It is shown that for thin sources with a flat spectrum (integral exponent γ = 1.1) a large (S = 0.1 km2) underground detector can detect both neutrinos and gamma-quanta generated by the source. Finally we compare the performances of underground detectors with S = 0.1 km2 for the search of gamma sources at E = 100 TeV with those of the previously proposed 1 km2 EAS array.  相似文献   

11.
After a brief historical review of the discovery of helium in the terrestrial atmosphere, the production mechanisms of the isotopes He4 and He3 are discussed. Although the radioactive production of He4 in the Earth is well understood, some uncertainty still exists for the degassing process leading to an atmospheric influx of (2.5 ±1.5) × 106 atoms cm–2 s–1. Different production mechanisms are possible for He3 leading to an influx of (7.5±2.5) atoms cm–2 s–1. Observations of helium in the thermosphere show a great variability of this constituent. The different mechanisms proposed to explain the presence of the winter helium bulge are discussed. Since helium ions are present in the topside ionosphere and in the magnetosphere, ionization mechanisms are analyzed. Owing to possible variations and uncertainties in the solar UV flux, the photoionization coefficient is (8±4) × 10–8 s–1. Finally, the helium balance between production in the earth and loss into the interplanetary space is discussed with respect to the different processes which can play an effective role.  相似文献   

12.
13.
Knowledge of the elemental composition of the interstellar gas is of fundamental importance for understanding galactic chemical evolution. In addition to spectroscopic determinations of certain element abundance ratios, measurements of the composition of interstellar pickup ions and Anomalous Cosmic Rays (ACRs) have provided the principal means to obtain this critical information. Recent advances in our understanding of particle acceleration processes in the heliosphere and measurements by the Voyagers of the energy spectra and composition of energetic particles in the heliosheath provide us with another means of determining the abundance of the neutral components of the local interstellar gas. Here we compare the composition at the termination shock of six elements obtained from measurements of (a) pickup ions at ~5 AU, (b) ACRs in the heliosphere at ~70 AU, and (c) energetic particles as well as (d) ACRs in the heliosheath at ~100 AU. We find consistency among these four sets of derived neutral abundances. The average interstellar neutral densities at the termination shock for H, N, O, Ne and Ar are found to be 0.055±0.021 cm?3, (1.44±0.45)×10?5 cm?3, (6.46±1.89)×10?5 cm?3, (8.5±3.3)×10?6 cm?3, and (1.08±0.49)×10?7 cm?3, respectively, assuming the He density is 0.0148±0.002 cm?3.  相似文献   

14.
The tendency of iodine to be mobilised during secondary processing is reflected both in the presence of 129XeXS in secondary minerals and in the bulk 129XeXS/I ratios in meteorites. Comparison of absolute ages derived through calibration of chronometers based on 129Xe, 53Mn and 26Al against the Pb-Pb system yields a plausible timescale for the early solar system. In this system, the earliest chondrule ages are most readily interpreted as representing formation after the beginning of parent body processing. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
《中国航空学报》2019,32(11):2516-2525
The stress corrosion cracking (SCC) susceptibility of 2297 Al-Li alloy in 1 M NaCl + 0.01 M H2O2 solution (CP solution) and 1 M NaCl + 0.01 M H2O2 + 0.6 M Na2SO4 solution (CPS solution) was investigated by slow-strain rate tests at various strain rates ranging from 10−5 s−1 to 10−7 s−1. The roles of H2O2 and SO42− in the corrosion process were estimated by potentiodynamic polarization and electrochemical impedance spectroscopy. 2297 Al-Li alloy does not fracture ascribed to SCC in CP solution, while it undergoes SCC in CPS solution. In CPS solution, with a decreasing strain rate from 10−5 s−1 to 10−7 s−1, the SCC susceptibility firstly rises and then declines exhibiting a peak value at a strain rate of 10−6 s−1. H2O2 promotes the active dissolution while SO42− lowers the corrosion rate. The SCC fracture is associated with a decline in the dissolution rate of the crack tip by SO42−, which leads to stress concentration. In CPS solution, a reduction in the local dissolution rate of the crack tip leads to stress concentration, resulting in SCC fracture. As the preferred initiation site for a crack, pits also show a noteworthy effect on SCC of 2297 Al-Li alloy.  相似文献   

16.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

17.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

18.
Recent observations with UVCS on SOHO of high outflow velocities of O5+ at low coronal heights have spurred much discussion about the dynamics of solar wind acceleration. On the other hand, O6+ is the most abundant oxygen charge state in the solar wind, but is not observed by UVCS or by SUMER because this helium-like ion has no emission lines falling in the wave lengths observable by these instruments. Therefore, there is considerable interest in observing O5+ in situ in order to understand the relative importance of O5+ with respect to the much more abundant O6+. High speed streams are the prime candidates for the search for O5+ because all elements exhibit lower freezing-in temperatures in high speed streams than in the slow solar wind. The Ulysses spacecraft was exposed to long time periods of high speed streams during its passage over the polar regions of the Sun. The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is capable of resolving this rare oxygen charge state. We present the first measurement of O5+ in the solar wind and compare these data with those of the more abundant oxygen species O6+ and O7+. We find that our observations of the oxygen charge states can be fitted with a single coronal electron temperature in the range of 1.0 to 1.2 MK assuming collisional ionization/recombination equilibrium with an ambient Maxwellian electron gas. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The formation of the observed solar cosmic ray (SCR) composition remains an open question. It has become particularly acute after the discovery of 3He-rich events. The 3He/4He abundance ratio revealed in such events exceeds substantially (up to four orders of magnitude) that in the solar atmosphere.The data available on the 3He-rich events are discussed and a list of all such events known up to date is presented. Most of the 3He-rich SCR events can be associated with the corresponding optical flares on the Sun, with X-ray and radiobursts.An analysis of the models of 3He enrichement proposed up to now shows that only preferential 3He heating by plasma mechanisms can provide the observed high enrichment levels (3He/4He 1).A model involving preferential heating of 3He by induced scattering on ions of the ion acoustic waves generated by flare associated electrons in the solar atmosphere is considered in detail. This model can account for the major properties of the 3He-rich flares.Observational implications of the 3He-rich solar flare model are analyzed; the predictions of the theory are compared with the experimental data available, and promising avenues of further relevant experimental and theoretical research are considered.However it is shown that all main conclusions made based on the expressions ((3.2), (3.11), (3.12)) remain the same.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号