首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dynamics of an axisymmetric gyrostat satellite moving in the central Newtonian force field along a circular orbit is investigated. All equilibrium positions of the gyrostat satellite in the orbital coordinate system are determined, and the sufficient stability conditions of equilibrium positions are derived.  相似文献   

2.
The motion of a free gyrostat consisting of a platform with a triaxial ellipsoid of inertia and a rotor with a slight asymmetry with respect to the axis of rotation is considered. Dimensionless equations of motion for a system with perturbations caused by the small asymmetries of the rotor are written in Andoyer-Deprit variables. These perturbations result in a chaotic layer in the separatrix vicinity. Heteroclinic and homoclinic trajectories are written in analytical form for gyrostats with different ratios of their moments of inertia. These trajectories are used to construct a modified Melnikov function, and to produce control that eliminates separatrix chaos. The Poincare sections and Melnikov function are constructed via numerical modeling that demonstrates the effectiveness of control.  相似文献   

3.
Dynamics of a gyrostat satellite moving along a circular orbit in a central Newtonian field of force is investigated. In a particular case, when the gyrostatic moment vector lies in one of the satellite’s principal central planes of inertia, all positions of equilibrium are determined, and the conditions of their existence are analyzed. Also determined are bifurcation values of dimensionless parameters, at which the number of equilibrium positions changes. As a result of analysis of the generalized energy integral, for each equilibrium orientation the sufficient conditions of stability are derived. Evolution of the regions where the sufficient conditions of stability are valid is investigated under variation of the system’s dimensionless parameters.  相似文献   

4.
We investigated periodic motions of the axis of symmetry of a model satellite of the Earth, which are similar to the motions of the longitudinal axes of the Mir orbital station in 1999–2001 and the Foton-M3 satellite in 2007. The motions of these spacecraft represented weakly disturbed regular Euler precession with the angular momentum vector of motion relative to the center of mass close to the orbital plane. The direction of this vector during the motion was not practically changed. The model satellite represents an axisymmetric gyrostat with gyrostatic moment directed along the axis of symmetry. The satellite moves in a circular orbit and undergoes the action of the gravitational torque. The motion of the axis of symmetry of this satellite relative to the absolute space is described by fourth-order differential equations with periodic coefficients. The periodic solutions to this system with special symmetry properties are constructed using analytical and numerical methods.  相似文献   

5.
Properties of differential equations of multi-orbit trajectory motion of a spacecraft are investigated analytically. The spacecraft moves under the action of small perturbations (in particular, low thrust) in the plane of a central Newtonian field of attraction. The conditions are specified for existence of a partial singular aperiodic solution, in the neighborhood of which the behavior of osculating elements changes sharply. In this case, phase variables (the angular position of the pericenter and the true anomaly) are found to undergo the sharpest changes. The exact superposition of solutions is suggested for the equations of motion transformed to the form of a quasi-linear, weakly non-stationary system: a partial singular aperiodic solution and fast solutions oscillating around it. Asymptotic representations are obtained for both components of the superposition. They are fairly exact in the region of smallness of perturbing terms at a long variation of the argument.  相似文献   

6.
Translational-rotational motion of two viscoelastic planets in a gravitational force field is studied. The planets are modeled by homogeneous isotropic viscoelastic bodies. In their natural undeformed state each of the planets represents a sphere. We investigate a specific case when the planet’s centers of mass move in a fixed plane, the axis of rotation for each planet being directed along the normal to this plane. An equation describing the evolution of a slow angular variable (perihelion longitude) is derived. The observed displacement of the perihelion of Mercury is compared with the results obtained in the considered model problem about motion of two viscoelastic planets. Quite important is the fact that the planet of smaller mass (Mercury) moves not in a central Newtonian field of forces, but rather in the gravitational field of a rotating viscoelastic planet (Sun).  相似文献   

7.
Nikolaev VP 《Acta Astronautica》1998,42(1-8):139-158
Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.  相似文献   

8.
In a previous paper [1], as a result of group-theoretic decomposition, one of the problems of the optimization of the flexible correction process was reduced to a series of subproblems. In this paper, the analytical solutions to these subproblems are obtained by the sweep method. A series of other similar problems with different variants of flexibility is also considered; the decomposition of these problems is performed, and their analytical solutions are presented. It is shown for some numerical examples that flexible corrections require essentially lower fuel consumption than the rigid correction, where all parameters characterizing the absolute motion of a satellite system are corrected to their nominal values.  相似文献   

9.
The results of numerical solution of the problem of a rendezvous in the central Newtonian gravitational field of a controlled spacecraft with an uncontrollable spacecraft moving along an elliptic Keplerian orbit are presented. Two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems and using quaternion variables to describe the orientations of these coordinate systems. The problem of a rendezvous of two spacecraft is formulated [1, 2] as a problem of optimal control by the motion of the center of mass of a controlled spacecraft with a movable right end of the trajectory, and it is solved on the basis of Pontryagin's maximum principle. The paper is a continuation of papers [1, 2], where the problem of a rendezvous of two spacecraft has been considered theoretically using the two above variants of the equations of motion for the center of mass of the controlled spacecraft.  相似文献   

10.
再入飞船的通信环境所受影响主要体现于飞船周围等离子体鞘对电磁波产生衰减。为了研究飞船再入过程中衰减对通信的影响,需要建立飞船外围的三维通信衰减仿真模型,在此基础上可以研究适用于再入通信环境的新型通信技术。为此文章提出了再入飞船通信衰减的动态建模方法,并根据气动、热力学和电磁波理论公式提出了具体的飞船再入动态通信环境建模方案,同时阐述了各部分建模的研究方法,为进一步研究应对黑障的新型通信技术奠定了基础。  相似文献   

11.
The theory of generalized elastic potentials is used for solving the problem of a space with cracks of arbitrary shape. Two solutions are proposed. In the first case, the solution is represented by a double-layer potential and a functional equation for determination of the unknown density is constructed in which difficulties stipulated by high polarity of the integrand may be eliminated. The other method consists of an analysis of a space with a thin smooth cavity and the solution of corresponding singular integral equations.Methods to improve the convergence of successive approximations used in solution of the equations are described and some particular cases of three-dimensional solids are considered. A special function is introduced on the external surface of the solid, which allows consideration of a whole space with cracks having fictitious stresses on their edges; this solution has some bearing on the main problem and also provides an integral equation for the auxiliary function. Another approach consists of the elimination of cracks by introduction of corresponding potentials and solution of the auxiliary problem for a continuous solid with special boundary conditions.  相似文献   

12.
The problem of a rendezvous in the central Newtonian gravitational field is considered for a controlled spacecraft and an uncontrollable spacecraft moving along an elliptic Keplerian orbit. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems and using quaternion variables to describe the orientations of these coordinate systems. In the first variant of the equations of motion a quaternion variable characterizes the orientation of an instantaneous orbit of the spacecraft and the spacecraft location in the orbit, while in the second variant it characterizes the orientation of the plane of the spacecraft instantaneous orbit and the location of a generalized pericenter in the orbit. The quaternion variable used in the second variant of the equations of motion is a quaternion osculating element of the spacecraft orbit. The problem of a rendezvous of two spacecraft is formulated as a problem of optimal control by the motion of the center of mass of a controlled spacecraft with a movable right end of the trajectory, and it is solved on the basis of Pontryagin's maximum principle.  相似文献   

13.
The motion of a large number of artificial satellites connected in a ring one after another by tethers of variable length is considered. Every satellite is supposed to have a control system programmed according to some tether tension law as a function of the distance between tethered satellites. The effect of the tension control law on the stability of stationary rotation of this ring is investigated. The final stability condition includes two requirements: 1) the nominal tether tension should be less than a definite limit equal, up to numerical coefficient, to one satellite weight divided by the number of satellites; 2) tether tension should decrease (or remain constant) with the increase of the distance between tethered satellites. In dynamics the artificial rings of this kind are much like their natural prototype—meteor rings. On the other hand, the investigation of the artificial rings contributes to developing an unexpected view upon meteor rings, suggesting a model of an imaginary equivalent string.  相似文献   

14.
Vil'ke  V. G.  Shatina  A. V. 《Cosmic Research》2001,39(3):295-302
A model of a binary planet, consisting of a material point of small mass and a deformable viscoelastic sphere, is suggested. The center of mass of the binary planet moves in the gravitational field of a central body in the plane, which contains planets forming the binary planet. A deformable spherical planet rotates around the axis orthogonal to the plane of planetary motion. Planet deformations are described by the linear theory of viscoelasticity. It is shown that with an appropriate approximation of the gravitational potential, there is a class of quasicircular orbits, when the eccentricities of an orbit of the center of mass of a binary planet and an orbit, describing mutual planet motion, are equal to zero. The further evolution of motion is investigated in this class of orbits with the use of the canonical Poincare–Andoyer variables. Corresponding averaged equations are found, and phase pictures are constructed; the stability of stationary solutions is investigated on the basis of equations in variations. For the Solar system planets with their satellites, forming binary planets, the application of the presented model allows us to conclude that satellites sooner or later will fall on the corresponding planets.  相似文献   

15.
We present the resutls of a prompt determination of the uncontrolled attitude motion of the Foton M-2 satellite, which was in orbit from May 31 to June 16, 2005. The data of onboard measurements of the angular velocity vector were used for this determination. The measurement sessions were carried out once a day, each lasting 83 min. Upon terminating a session, the data were transmitted to the ground to be processed using the least squares method and integrating the equations of motion of the satellite with respect to its center of mass. As a result of processing, the initial conditions of motion during a session were estimated, as well as parameters of the mathematical model used. The satellite’s actual motion is determined for 12 such sessions. The results obtained in flight completely described the satellite’s motion. This motion, having begun with a small angular velocity, gradually became faster, and in two days became close to the regular Euler precession of an axisymmetric solid body. On June 14, 2005 the angular velocity of the satellite with respect to its longitudinal axis was approximately 1.3 degrees per second, and the angular velocity projection onto a plane perpendicular to this axis had a magnitude of about 0.11 degrees per second. The results obtained are consistent with more precise results obtained later by processing the data on the Earth’s magnetic field measured on the same satellite, and they complement the latter in determination of the motion in the concluding segment of the flight, when no magnetic measurements were performed.  相似文献   

16.
强激光对靶材烧蚀效应的数值模拟研究   总被引:1,自引:1,他引:0  
强激光烧蚀是一个复杂的物理化学过程,包括质量迁移、相变、运动边界等诸多复杂因素。如果靶为复合材料,烧蚀机理更加复杂,而且很难找到共性规律,这对数值计算方法提出了较高的要求。文章介绍了强激光烧蚀的理论基础、烧蚀模型以及对强激光烧蚀进行数值模拟的无网格方法(光滑粒子动力学方法,即SPH方法)。采用了SPH方法对典型靶的激光烧蚀进行了数值模拟,并给出了单层铝靶和环氧树脂/铝双层靶在激光辐照下的烧蚀形貌与温度场。计算结果表明,在不同材料的交界面,烧蚀将沿径向发展。  相似文献   

17.
A communication satellite (small spacecraft) injected into a geosynchronous orbit is considered. Flywheel engines are used to control the rotational spacecraft motion. The spacecraft after the emergency situation has passed into a state of uncontrolled rotation. In this case, no direct telemetric information about parameters of its rotational motion was accessible. As a result, the problem arose to determine the rotational satellite motion according to the available indirect information: current taken from the solar panels. Telemetric measurements of solar panel current obtained on the time interval of a few hours were simultaneously processed by the least squares method integrating the equations of rotational satellite motion. We present the results of processing 10 intervals of the measurement data allowing one to determine the real rotational spacecraft motion and to estimate the total angular momentum of flywheel engines.  相似文献   

18.
Mozhaev  G. V. 《Cosmic Research》2001,39(5):485-497
The first of a series of problems of the optimization of correction of satellite systems, moving over near-circular orbits, is considered. The correction is accomplished by means of low-thrust engines and is supposed to be flexible, where only the parameters of the relative motion of satellites must be corrected. The problem has a large dimension, but is invariant with respect to renumbering of satellites. This allows us to decompose the problem, i.e., to find new variables, linearly dependent on old ones, in which the problem breaks down into a series of independent subproblems of low dimension. The decomposition is accomplished by means of the technique [1] based on the theory of linear representations of groups.  相似文献   

19.
In a central Newtonian gravitational field, the motion of a dynamically symmetrical satellite along an elliptical orbit of arbitrary eccentricity is considered. The particular motion of the satellite is known when its axis of symmetry is perpendicular to the orbit plane, and the satellite rotates about this axis with a constant angular velocity (cylindrical precession). A nonlinear analysis of stability of this motion has been performed under the assumption that the geometry of the satellite mass corresponds to a thin plate. At small values of orbit eccentricity e the analysis is analytical, while numerical analysis is used for arbitrary values of e.  相似文献   

20.
Most plausible futures for space exploration and exploitation require a large mass in Earth orbit. Delivering this mass requires overcoming the Earth's natural gravity well, which imposes a distinct obstacle to any future space venture. An alternative solution is to search for more accessible resources elsewhere. In particular, this paper examines the possibility of future utilisation of near Earth asteroid resources. The accessibility of asteroid material can be estimated by analysing the volume of Keplerian orbital element space from which Earth can be reached under a certain energy threshold and then by mapping this analysis onto an existing statistical near Earth objects (NEO) model. Earth is reached through orbital transfers defined by a series of impulsive manoeuvres and computed using the patched-conic approximation. The NEO model allows an estimation of the probability of finding an object that could be transferred with a given Δv budget. For the first time, a resource map provides a realistic assessment of the mass of material resources in near Earth space as a function of energy investment. The results show that there is a considerable mass of resources that can be accessed and exploited at relatively low levels of energy. More importantly, asteroid resources can be accessed with an entire spectrum of levels of energy, unlike other more massive bodies such as the Earth or Moon, which require a minimum energy threshold implicit in their gravity well. With this resource map, the total change of velocity required to capture an asteroid, or transfer its resources to Earth, can be estimated as a function of object size. Thus, realistic examples of asteroid resource utilisation can be provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号