共查询到20条相似文献,搜索用时 15 毫秒
1.
Chondrogenesis in aggregates of embryonic limb cells grown in a rotating wall vessel. 总被引:1,自引:0,他引:1
J Duke E Daane J Arizpe D Montufar-Solis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(6-7):289-293
Previous studies in this lab have shown that chondrogenesis is affected in growth plates of rats exposed to microgravity, and in micromass cultures of embryonic limb mesenchyme differentiating in space. In order to provide a three dimensional aspect not seen in the micromass system, and a tissue homogeneity not possible with explants of limb or limb elements, and to alleviate certain difficulties regarding crew time and stowage, we began culturing embryonic limb cells in Rotating Wall Vessels (RWV). First, these cells were attached to beads, and grown for up to 65 days in a type of RWV known as STLV at the Johnson Space Center. During this time, the cells and beads aggregated and the aggregates continued to increase in size, and differentiated into Alcian blue staining chondrocytes. Because our intent was to use these aggregates for implanting into bony defects in addition to their use in studies of chondrogenic regulation at 1g and microgravity, aggregates of these cells without beads were grown in the commercially available version of the STLV, and their ability to ossify when subcutaneously implanted assessed. 相似文献
2.
P. Annamalai R. Cole 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(5):165-168
The interaction of liquids is an important part of many processes and is often used for such purposes as causing a separation of solution components by mass transfer between phases, allowing a chemical reaction between liquids or their components, providing direct contact heating or cooling, or creating emulsions. Containerless space processing may well involve the interaction of liquids in the form of drops. For example it may be desirable to form an alloy in space by merger of two or more drops. Encapsulation of a volatile liquid by a second less volatile and immiscible liquid might be a means for avoiding volatilization. Rotation of such systems would enhance mixing where desirable and/or provide means for drop management. In this study, single drop behavior in rotating liquid bodies is studied experimentally. 相似文献
3.
Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor. 总被引:1,自引:0,他引:1
D Montufar-Solis C R Oakley Y Jefferson P J Duke 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(8):1467-1472
Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (1 g). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of E11.5 limb buds was cultured with and without encapsulation in alginate prior to culturing in the bioreactor. Encapsulated limbs grown in the bioreactor did not fuse together, but developed only the more proximal elements while limbs grown in culture dishes formed proximal and distal elements. Alginate encapsulation may have reduced oxygenation to the progress zone of the developing limb bud resulting in lack of development of the more distal elements. These results show that the bioreactor supports growth and differentiation of skeletal elements in entire E13 limb buds, and that a method to culture younger limb buds without fusing together needs to be developed if any morphometric analysis is to be performed. 相似文献
4.
A Baüerle R H Anken R Hilbig N Baumhauer H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1598-1601
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 micrometers2), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia. 相似文献
5.
G.S.R. Sarma 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(5):33-36
The problem of controlling the onset of convective instability in a liquid layer due to the joint action of buoyancy and interfacial tension mechanisms by means of rotation and magnetic field is considered. Selected stability characteristics delineating the effects of both these stabilizing agencies and those of interfacial curvature and gravity waves as well as those of typical boundary conditions are illustrated. 相似文献
6.
T Sakashita M Doi H Yasuda S Fuma D-P Hader 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):1023-1030
The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34 +/- 4 Gy (gamma-rays) and 13 +/- 1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6 +/- 0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity. 相似文献
7.
K Eguchi-Kasai M Murakami H Itsukaichi K Fukutsu F Yatagai T Kanai H Ohara K Sato 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):543-549
It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing (Kelland et al., 1988; Radford, 1986). We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/micrometer and were even smaller than unity for the LET region greater than 300 keV/micrometer. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/micrometer, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main muse of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS. 相似文献
8.
T C Yang L M Craise M R Raju 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(10):2123-2130
For a better understanding of oncogenic cell transformation by ionizing radiation, we conducted experiments with ultrasoft X rays and low energy alpha particles. Confluent C3H10T1/2 cells were irradiated by Al-K (1.5 keV) X rays or alpha particles from plutonium through a thin mylar sheet, on which the cells attached and grew. Our results indicated that Al-K X rays were more effective in causing cell inactivation and oncogenic transformation than 60Co gamma rays but less effective than 1.0 and 3.7 MeV alpha particles. There was no significant difference between 1.0 and 3.7 MeV alpha particles in transforming cells although the latter were slightly more effective than the former in producing lethal effect. These results indicated that track structure is important in causing biological effects by ionizing radiation. 相似文献
9.
J M Greenberg A Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):981-990
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star. 相似文献
10.
H.D. Voss W.L. Imhof J. Mobilia E.E. Gaines J.B. Reagan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(4):175-178
Data are presented on the zones of energetic particle precipitation at middle and low latitudes observed during and after magnetic storm injection events. Satellite measurements of the equatorial zone ion flux (~ 103 - 104 cm?2 s?1 sr?1 for E > 45 keV at 240 km) are consistent with the development of a temporary low altitude ion radiation belt at the magnetic equator. In the midlatitude ion zone the flux (~ 103 - 105 ions cm?2 s?1 sr?1 for E > 45 keV at 220 km) is directly related to magnetic activity while the midlatitude electron zone flux has a delayed response (~ 4 days). 相似文献
11.
H Yasuda T Komiyama K Fujitaka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):1011-1015
The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%. 相似文献
12.
W A Hunt J A Joseph B M Rabin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):333-336
Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied. 相似文献
13.
K Kobayashi H Masuda K I Ushio A Ohashi H Yamanashi T Kaneko J I Takahashi T Hosokawa H Hashimoto T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):207-215
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source. 相似文献
14.
M E Vazquez E Kirk 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(10):2041-2049
The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle. 相似文献
15.
F J Baisch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):359-364
Absence of hydrostatic forces in the human cardiocirculatory system normally leads to an overall body fluid deficit. It was hypothesized that this is mainly due to a loss of interstitial fluid. An experiment was performed on board the Russian MIR station. Cuffs were positioned around both thighs and inflated up to suprasystolic values. This maneuver took place just before and after immediately a lower body negative pressure session (LBNP). The redistribution of fluids underneath the cuffs was assessed by means of cross-sectional impedance tomography (Applied Potential Tomography, APT). A microgravity induced loss of interstitial fluid was measured in all layers of the observed cross-section. The APT-readings changed significantly (SD approximately +/- .9) from 3.0 at 1g to 1.7 at 0g for the outer layer and from 2.7 at 1g to 2.0 at 0g for the middle layer (expressed in arbitrary units). The LBNP maneuver was able to fill the interstitial space but only at levels higher than -15 mmHg LBNP. This suggests that the superficial tissues in the legs are as much affected as the deeper ones by changing g-conditions and LBNP can be used to counteract interstitial fluid loss in this area. 相似文献
16.
K Kobayashi T Kaneko T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):461-464
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase. 相似文献
17.
A model of solar energetic particles for use in calculating LET spectra developed from ONR-604 data.
J Chen D Chenette T G Guzik M Garcia-Munoz K R Pyle Y Sang J P Wefel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):675-680
A model of solar energetic particles (SEP) has been developed and is applied to solar flares during the 1990/1991 CRRES mission using data measured by the University of Chicago instrument, ONR-604. The model includes the time-dependent behavior, heavy-ion content, energy spectrum and fluence, and can accurately represent the observed SEP events in the energy range between 40 to 500 MeV/nucleon. Results are presented for the March and June, 1991 flare periods. 相似文献
18.
P A Craven M J Rycroft 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(2):300-304
Amongst the great variety of heavy particles present in the galactic and solar cosmic ray spectra, hydrogen and helium nuclei are significantly more abundant than all other heavier ions and, as such, represent a major radiation hazard to humans in space. Experimental data have suggested that differences in relative biological effectiveness (RBE) exist between the two species at the same value of linear energy transfer (LET). This has consequences for heavily ionising radiation protection procedures, which currently still assume a simple dependence of radiation quality on LET. By analysing the secondary electron (delta-ray) emission spectra of protons and alpha particles, in terms of the spatial characteristics of energy deposition in cellular targets and the likelihood of complex lesion formation, a numerical quantity representing biological effectiveness is generated. When expressed relative to a reference radiation, this quantity is found to differ for protons and a particles of the same LET, demonstrating not only the ion-specific nature of RBE but also the inadequacy of specifying radiation quality as a function of LET only. Such a method for numerically assessing radiation quality may have implications for procedures for heavy ion protection in space at low doses and for understanding the initial mechanisms of radiation action. 相似文献
19.
J. Rodriguez V. Lapuerta A. Laveron-Simavilla M. Cordero-Gracia 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
An experiment in microgravity conditions aboard the TEXUS-23 mission was performed to obtain the deformation up to breakage of a cylindrical liquid column in isorotation around an eccentric axis. In previous work, breakage rotation speed was predicted by a numerical method. This method was validated by comparison with analytical and experimental results. The non-symmetric breakage of the liquid column observed in the experiment, however, was not explained by the combined effect of rotation and eccentricity. 相似文献
20.
Xiaocan Li Brahmananda Dasgupta Gang Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We investigate the acceleration of charged particles in a time-dependent chaotic magnetic field in this work. In earlier works, it has been demonstrated that in an asymmetric wire-loop current systems (WLCSs), the magnetic field is of chaotic in nature. Furthermore, observations also showed that there exist time-varying current loops and current filaments in solar corona. It is therefore natural to conceive that the magnetic field on the solar surface is chaotic and time-dependent. Here, we develop a numerical model to study the acceleration process of charged particles in a time-varying chaotic magnetic field that is generated by an ensemble of 8 WLCSs. We found that the motion of energetic particles in the system is of diffusive in nature and a power law spectrum can quickly develop. The mechanism examined here may serve as an efficient pre-acceleration mechanism that generates the so-called seed particles for diffusive shock acceleration at a coronal mass ejection (CME) driven shock in large solar energetic particle (SEP) events. 相似文献