首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
提出了基于小波神经网络PID的永磁同步电机(PMSM)转速控制策略。根据系统运行参数的变化,采用三层前馈式人工神经网络,基于梯度下降纠正误差法在线训练实时更新PID参数值。采用小波神经网络和增量式PID共同构成转速环控制器。建立PMSM数学模型,设计PMSM速度环控制器,构建S函数,对控制算法进行仿真试验,验证了该控制算法的先进性。试验结果表明,所提控制策略比传统PID转速控制具有更好的动态性能和抗干扰能力。  相似文献   

2.
航空发动机小波神经网络PID控制   总被引:2,自引:0,他引:2  
提出了一种基于小波神经网络在线辨识的航空发动机比例-积分-微分(PID)控制算法.网络采用三层前向网络结构,以小波函数作为隐含层的激励函数.采用离线训练的方式训练出网络参数,以网络输出和输入之间的偏导数代替发动机模型输出和输入变量之间的偏导数,用以在线修正PID控制器的参数.阶跃响应测试表明,用小波神经网络整定的PID控制系统动态调节时间小于2s,稳态误差为零,在全飞行包线内均稳定正常工作.   相似文献   

3.
航空电源系统是机上设备的重要组成部分,任意一个环节出现故障,将会影响整个飞机系统的正常安全运行。针对神经网络收敛速度慢,易陷入局部最小的缺点,将小波神经网络结合弹性BP算法应用到电源系统故障诊断中。训练过程及仿真结果表明:小波神经网络故障诊断算法收敛时间方面表现更优,具有较高故障诊断率。  相似文献   

4.
基于小波变换和神经网络的航空发动机故障诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
在阐述了小波变换和BP神经网络概念的基础上,根据小波神经网络故障诊断的基本思想,提出了一种基于“能量-故障”的小波预处理神经网络航空发动机诊断方法。实验仿真结果表明,使用该方法提取故障特征加快了神经网络的训练速度,能迅速地进行故障的诊断。  相似文献   

5.
陈农  贾区耀 《飞行力学》2001,19(1):67-69
在气动动态实验中,往往飞行器气动模型是非线性的,很难对动态系统进行正确建模,因此无法得到准确的气动参数值。而采用自适应小波神经网络,无需对该动态系统建模,就可准确地辨识出气动动稳定特性,同时,精度较高、收敛速度较快。采用该方法对某导弹模型风洞自由飞实验结果进行了辨识与动稳定性分析,结果表明用自适用小波神经网络辨识安全可靠。  相似文献   

6.
段绍栋  肖玲斐  申涛 《航空发动机》2012,38(2):11-14,31
通过对功率平衡关系进行分析,提出了利用功率反馈设计智能神经网络PID控制器的方法。基于BP(Back Propagation)神经网络,将功率信号作为神经网络的输入层信号,并改进了网络权值的学习规则。通过在线整定PID参数,控制器能够根据功率误差信号的变化实时调整控制参数,从而使系统自主寻找到功率平衡点,具有良好的稳态和动态响应特性。仿真结果表明:该方法可以使涡轴发动机在全包线范围内具有理想的控制性能。  相似文献   

7.
针对传统PID控制器参数不能随直流电机转速变化而适时整定的缺点,将常规PID控制器与具有自学习功能的神经网络相结合,提出了基于BP神经网络的PID控制算法。通过工控机与PLC之间的通信,实现用户自行开发的神经网络对PID参数的适时整定,其控制效果已经通过实验进行了充分验证,较传统参数固定式PID调速器具有更快的调节速度和更高的调节精度。  相似文献   

8.
基于小波神经网络提出了一种H∞自适应控制方法。控制器由等效控制器和H∞控制器两部分组成。用小波神经网络逼近非线性函数,并把逼近误差引入到权值的自适应律中用以改善系统的动态性能。H∞控制器用于减弱外部及神经网络的逼近误差对跟踪的影响。所设计的控制器不仅保证了闭环系统的稳定性,而且使外部干扰及神经网络的逼近误差对跟踪的影响减小到给定的性能指标。最后基于所设计的控制方法对新一代歼击机设计了飞/推控制系统,并对飞机作大迎角机动仿真。仿真结果表明所设计的飞/推控制系统是有效的,同时验证了所设计的非线性控制方法是有效性的。   相似文献   

9.
为了实现对PCBA的快速准确检测,提出了基于小波神经网络的检测模型,分析了网络的拓扑结构.仿真显示,该检测模型的误差小,精确度高,检测速度快,提高了SMT生产线上的一次通过率的可靠性.  相似文献   

10.
本文提出一种具有神经网络自适应补偿的、位置伺服系统的、PID控制结构模式。在该系统中,控制器由两部分构成:一部分是常规的PID算法;第二部分是由前馈神经网络构成的自适应补偿器。数字仿真试验和实际测试的结果表明:本文提出的方法对存在系统参数不易准确确定及飞线性因素不易定量描述的位置伺服系统的控制问题,显示出了较好的效果。系统输出精度高,响应速度快并具有相当强的鲁棒性和客错性。  相似文献   

11.
舵机控制系统存在响应速度慢、抗干扰能力差、系统参数不易整定、现有控制技术与设计方法的局限性等问题,这些问题影响了舵机的性能。为了提高制导火箭弹舵机伺服控制系统的性能,文章从舵机智能控制技术出发,研究了舵机的智能控制算法和Simulink系统仿真模型,采用模糊神经网络PID控制器来提高舵机的稳定性。仿真结果表明,模糊神经网络相比其他控制器进一步提升了舵机控制系统的控制效果。  相似文献   

12.
飞机航向神经网络PID参数自整定控制器研究   总被引:2,自引:0,他引:2  
飞机航向操纵的模型参数具有非线性、慢时变特性。飞机航向操纵的传统控制方法的操纵性能不能令人满意。本文讨论一种应用BP神经网络实现PID参数自整定的控制方法。此法能根据飞机动态特性的变化,自动重新整定PID参数,从而改善了飞机航向的操纵性能和鲁棒性。  相似文献   

13.
将B样条小波展开技术提取的损伤特征值作为改进BPNN输入进行学习与识别,识别结果显示该方法能够对复合材料层合板多种损伤进行快速准确的识别。  相似文献   

14.
通过对功率平衡关系进行分析,提出了利用功率反馈设计智能神经网络PIO控制器的方法。基于BP(Back Propagation)神经网络,将功率信号作为神经网络的输入层信号,并改进了网络权值的学习规则。通过在线整定PID参数,控制器能够根据功率误差信号的变化实时调整控制参数,从而使系统自主寻找到功率平衡点,具有良好的稳态和动态响应特性。仿真结果表明:该方法可以使涡轴发动机在全包线范围内具有理想的控制性能。  相似文献   

15.
针对工业控制领域中非线性系统控制,在基于梯度下降法的RBF网络PID整定的基础上,对整定算法作出改进,控制目标不再是使当前跟踪误差最小,而是使当前跟踪误差和下一时刻跟踪误差的平方和最小。实现过程为:先由RBF神经网络在线辨识被控对象离散模型,得到被控对象的Jacobian信息,采用梯度下降法对PID控制器参数进行初步整定;然后,将系统跟踪误差和PID参数输入支持向量机模型,通过回归预测系统下一时刻的误差,改进的整定算法利用预测误差信息对参数进行再整定。仿真结果表明,引入支持向量机回归优化的RBF神经网络PID整定收敛速度更快,精度更高,跟踪性能优于RBF神经网络PID整定。  相似文献   

16.
提出了一种基于小波包变换的残差能量方法,对导弹动态测试数据进行分析处理,提取导弹的故障特征,并在此基础上利用神经网络有效地实现了故障的诊断和定位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号