共查询到16条相似文献,搜索用时 62 毫秒
1.
为了提高微机电系统(MEMS,Micro Electro Mechanical System)陀螺测量的精度,提出了一种陀螺随机漂移的在线补偿方法.在静态时在线建立随机漂移的自回归滑动平均(ARMA,Auto Regressive Moving Average)模型,并针对随机漂移模型随时间慢变的特性,引入虚拟噪声补偿技术加以补偿.针对载体运动状况的未知性,建立机动角速率模型.在此基础上采用自适应卡尔曼滤波技术对随机漂移和角速率进行实时估计.通过试验表明:随机漂移模型、角速率模型以及滤波算法能够满足姿态测量系统的动态应用需要,且姿态测量精度较补偿前有了显著的提高. 相似文献
2.
MEMS陀螺标度因数误差分析及分段插值补偿 总被引:3,自引:1,他引:3
动态条件下,标度因数引起的误差是MEMS(Micro Electromechanical System)陀螺主要误差源之一.为了提高陀螺精度,基于内框驱动式硅MEMS陀螺误差机理,分析了标度因数常值误差、非线性误差以及不对称误差的物理起因,构建了标度因数误差数学模型,提出了对陀螺标度因数按照角速度大小分段插值的补偿方法,消除了转速引起的陀螺标度因数误差.试验结果表明:MEMS陀螺标度因数误差高达4053.2(°)/h(1 σ ),采用分段插值法补偿后陀螺误差减小到79.0(°)/h(1 σ ),补偿精度比一次拟合及分段法分别提高了15.4倍和7.5倍,验证了MEMS陀螺标度因数误差模型的正确性,证明了标度因数实时分段插值补偿方法的准确性和适用性. 相似文献
3.
一种基于MEMS的微惯性测量单元标定补偿方法 总被引:1,自引:0,他引:1
根据微机电系统MEMS(Micro Electronic Mechanical System)惯性器件的特点,在建立微惯性测量单元MIMU(Micro Inertial Measurement Unit)角速度及加速度误差数学模型的基础上,提出一种适用于MIMU的、仅采用单轴速率转台(无指北装置)的"动态翻转6位置"快速标定补偿方法.与传统标定方法相比,标定补偿方法简单便捷,可以一次确定出MIMU的45个误差系数,辨识误差系数精度高,尤其适用于低精度捷联惯性测量单元.通过理论分析、推导以及大量的实验验证,标定补偿方法可以将MIMU的精度提高2~3个数量级. 相似文献
4.
光纤陀螺随机漂移模型 总被引:7,自引:0,他引:7
随机漂移是光纤陀螺的主要误差,建立数学模型在输出中补偿是抑制该项误差、提高光纤陀螺精度的有效方法.光纤陀螺静态输出为随机过程,对该随机过程的平稳性和正态性进行分析,拟合趋势项、周期项并补偿,使其成为平稳随机序列.采用时间序列分析法建立光纤陀螺随机漂移模型,根据随机漂移自相关和偏相关系数的特性辨识模型的类型和阶数,利用最小二乘方法估计模型参数,得到光纤陀螺随机漂移模型为AR(2).对陀螺输出数据补偿,检验模型的适用性.结果表明,该模型具有很好的适用性,能够有效抑制随机漂移,提高光纤陀螺精度,可以作为惯导系统卡尔曼滤波器状态变量的数学模型. 相似文献
5.
针对捷联惯性导航系统(INS, Inertial Navigation System)全温动态环境下测量误差问题,提出一种全温六方位正反速率标定及分段线性插值补偿方法.根据工作环境设定标定温度点,在每个恒温点设计六方位正反速率标定方案;采用分段线性插值算法实时补偿系统零偏和标度因数温度误差,提高了系统温度及动态环境下的测量精度.实验结果表明:采用该方法系统的车载和飞行实验纯惯性导航误差均值分别由1.501 n mile/h和5.811 n mile/h减小到0.393 n mile/h和0.68 1n mile/h,为进一步提高合成孔径雷达(SAR,Synthetic Aperture Radar)成像分辨率奠定基础. 相似文献
6.
摘要: 针对半球谐振陀螺零偏受温度影响容易发生漂移的问题,提出一种基于陀螺自身谐振频率的自补偿方法.通过分析陀螺谐振频率与温度的关系特性说明陀螺谐振频率用作温度信息进行补偿的可行性,建立陀螺零偏的温度补偿模型及方案,采集陀螺驱动回路的谐振频率对零偏进行实时补偿.此方案中,陀螺谐振频率检测的分辨率为0.03 Hz,对应的温度分辨率为0.075 ℃,在-10 ℃~60 ℃温度范围内,陀螺的零偏漂移由补偿前的30(°)/h降低到2.8(°)/h.实验结果证明该方案的有效性. 相似文献
7.
针对非正交安装陀螺组件在轨标定问题,对已飞行应用的正交安装陀螺组件在轨标定方法进行改进,提出非共面安装陀螺组件在轨自主标定方法.首先建立非共面陀螺定姿误差模型,然后设计UD分解卡尔曼滤波器,用星敏和陀螺测量在轨直接估计陀螺常值漂移,间接估计陀螺安装误差和刻度因子误差.设计滤波器时,为实现测量更新序贯处理,给出测量噪声解... 相似文献
8.
9.
改进的内框架驱动式硅MEMS陀螺温度误差模型 总被引:3,自引:0,他引:3
温度误差是MEMS(Micro Electronic Mechanical System)陀螺仪的主要误差源之一,为了消除温度对内框架驱动式硅MEMS陀螺仪性能的影响,提出了一种改进的温度误差模型.基于硅材料的赛贝克(Seebeek)效应,结合表头温度变形,分析了陀螺仪零偏误差;利用温度引起的干扰力矩,分析了陀螺仪输出与比力及角加速度有关项误差;针对温度引起系统谐振频率的变化,分析了陀螺仪标度因数误差.试验结果表明:在温度变化过程中,比力引起的干扰力矩是导致陀螺仪温度误差的主要因素,验证了改进的温度误差模型的正确性,补偿后陀螺仪的零偏稳定性提高了53.75倍,标度因数精度提高了19.6倍,改进的温度误差模型也适用于其它MEMS陀螺仪. 相似文献
10.
为了更全面地了解微机电系统(MEMS,Micro-Electro-Mechanical Systems)陀螺仪的随机漂移误差随时间变化的特性,利用动态Allan方差分析法对MEMS陀螺仪输出信号特性进行了全面分析.首先介绍了Allan方差和动态Allan方差分析法原理,然后分别利用Allan方差分析法和动态Allan方差分析法对MEMS陀螺仪的实测数据进行了特性研究与性能分析.研究结果表明:速率斜坡、量化噪声和速率随机游走是MEMS陀螺的主要随机噪声,并且MEMS陀螺的随机漂移具有随时间变化的不稳定性.动态Allan方差不仅可以分离和辨识出MEMS陀螺的主要随机误差源,而且可以跟踪和描述信号随时间变化的稳定性,因此动态Allan方差较经典Allan方差分析法能够更全面地表征MEMS陀螺仪的性能. 相似文献
11.
在动力调谐陀螺的装配过程中陀螺和平衡环的中心轴总是不可能完全与驱动轴轴线重合,因此存在一定的安装倾斜角.通过对转子和平衡环的受力分析及陀螺的运动状态分析,并利用理论力学知识,建立了在考虑陀螺与平衡环安装倾斜角和陀螺壳体具有加速度和角速度条件下的运动方程,得到了安装倾斜角造成的干扰力矩表达式,并进行了讨论.分析结果表明:陀螺及平衡环的安装倾斜角对动力调谐陀螺的调谐条件有影响,此干扰力矩与壳体的运动状态无关而与力矩器对转子的作用力有关.因此,在装配中应尽量做到陀螺、平衡环及驱动轴的轴线重合,以便减小对动力调谐陀螺的调谐条件的影响. 相似文献
12.
为研究三自由度比力作用下半球型动压气浮轴承气膜变形对平台惯导中三浮陀螺仪输出的影响,提出了一种通过求解Reynolds方程来计算陀螺仪静态误差的数学模型。首先,在考虑气体稀薄效应条件下,针对三浮陀螺仪中的半球型动压气浮轴承给出对应的Reynolds润滑方程;然后,用有限差分法求解气膜压力场,并利用得到的载荷与转子位移计算陀螺仪静态误差;最终,通过回归分析,得到半球型动压气浮轴承陀螺仪的静态误差模型。为简化回归分析的过程,引入干扰力矩与比力的周向夹角和径向干扰力矩作为中间参数,将三元回归分析问题转化为二元回归分析问题。计算结果表明:径向干扰力矩随着轴向比力的增大而增大,随着径向比力的增大呈现先增大后减小的趋势;干扰力矩在周向上超前比力1.35~1.55 rad。本文静态误差模型可预测300 m/s2以内任意方向比力作用下由转子位移所引起的陀螺仪静态误差。 相似文献
13.
为提高磁悬浮控制敏感陀螺(MSCSG)对陀螺载体姿态的敏感精度,基于其洛伦兹力磁轴承(LFMB)的设计结构,提出了一种力矩器非圆性误差补偿方法。首先,针对一种新型双球形包络面转子MSCSG,介绍了MSCSG的结构特点与陀螺载体姿态角速度敏感原理,并分别建立了MSCSG力矩器半径误差模型、转子偏转干扰力矩模型与陀螺载体姿态角速度敏感误差模型。其次,通过实验测量了力矩器的圆度,通过MATLAB进行数据拟合得到了力矩器的非圆特性,采用勒让德多项式级数对力矩器非圆性进行了描述,并有效补偿了因力矩器非圆性误差导致的姿态角速度敏感误差。最后,对误差补偿效果进行了仿真验证,结果表明该补偿方法使陀螺载体姿态角速度敏感误差降低了83.5%。此外,本文方法还可以解决LFMB陀螺的相关共性问题。 相似文献
14.
航天器扫描镜成像位置误差补偿技术 总被引:1,自引:0,他引:1
研究地球静止轨道航天器两自由度扫描镜成像位置误差补偿问题,即通过对扫描角的补偿,使光轴在地球表面的成像点位置与标称位置相同,消除探测区域的位置偏差.在考虑扫描镜法线偏移、姿态偏差以及轨道误差条件下,推导了光轴成像点的地心经纬度计算公式.给出了上述3类误差的具体描述方式,并分析了各种误差对光轴成像点位置的影响关系.基于角度误差的小量假设条件,给出了扫描镜的步进角/扫描角补偿量的显式算法.针对法线偏移信息一般难以准确测量的问题,提出了一种利用扫描镜在特定工作模式下的光轴惯性空间定向能力和法线偏移的长周期特性对其进行估计的方法.仿真结果表明,所提出的补偿方案和算法能够显著提高成像点位置精度. 相似文献
15.
为补偿MEMS陀螺随机漂移,采用时间序列分析法对其进行自回归滑动平均(ARMA)模型辨识,提出一种滑动平均(MA)参数估计的新方法。先将陀螺随机漂移建模为带观测噪声的ARMA模型,在估计出自回归(AR)部分的参数后,针对AR滤波后的残差,推导出一种方差小的MA自协方差估计值,并将该估计值作为输入,利用Gevers-Wouters(GW)算法估计出MA部分的参数。仿真结果表明,MA参数估计精度得到提升的同时,参数估计可靠性也得到了增强。MEMS陀螺的随机漂移补偿实验进一步验证本文所提算法的补偿精度高于改进前。 相似文献