首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
改进和实现了支持向量机用于函数回归估计的算法,并将支持向量机和粒子群优化算法运用于压气机特性计算,以寻找压气机进口换算空气流量和效率随增压比、转子转速、压气机进气角度变化的非线性函数关系,将进气角度作为一个影响因子列入考虑范围,改进了以往只考虑压气机特性随转子转速和增压比变化的计算方法。用支持向量机回归估计压气机特性随各因子变化的非线性函数,用粒子群优化算法对非线性函数逼近度进行全局优化,计算结果表明,设计的算法能准确地回归估计出描述压气机特性的非线性函数,算法是有效的。   相似文献   

2.
钛合金材料在加工过程中受铣削力影响易于产生变形而影响加工效果,为保证加工质量,提高生产效率及降低加工成本,研究切削加工参数的合理选择非常重要.对钛合金材料Ti6Al4V铣削加工进行有限元数值计算,结合试验设计方法构建了基于支持向量机的切削力预测模型,以材料去除率为优化目标,提出了一种基于支持向量机和粒子群算法的优化方法,对钛合金铣削加工参数进行了优化.结果表明,该方法准确、高效、可行,为钛合金加工工艺参数优化提供一种新的方法,具有良好的推广价值.  相似文献   

3.
基于免疫粒子群算法的滑油屑末支持向量机预测模型设计   总被引:6,自引:3,他引:3  
李本威  张赟  孙涛 《航空动力学报》2009,24(7):1639-1643
将人工免疫理论的克隆选择算法中的抗体克隆、变异和抑制策略引入粒子群优化算法中,提出了一种基于克隆选择的免疫粒子群优化算法,克服了基本粒子群算法易于陷入局部最优解的缺点.针对支持向量机预测模型的参数选择影响其预测精度的问题,引入免疫粒子群优化算法设计了参数自适应优化的航空发动机滑油屑末支持向量机预测模型.仿真结果表明:与传统的交叉验证试算法相比,基于免疫粒子群优化的预测模型实现了参数的自动择优,并且提高了预测精度.   相似文献   

4.
磁化曲线是强非线性函数,提高磁化曲线的拟合精度对含有铁磁材料的电气设备建模准确性至关重要。提出了一种基于粒子群算法-最小二乘支持向量机(PSOLSSVM)算法的磁化曲线拟合方法。该方法用粒子群优化算法解决了最小二乘支持向量机(LSSVM)参数的选择问题。仿真结果显示PSOLSSVM算法能获得最优的LSSVM参数,且采用PSOLSSVM算法拟合的磁化曲线与实际测量的磁化曲线基本无偏差,拟合精度较高。  相似文献   

5.
张弦  王宏力 《航空学报》2010,31(12):2309-2314
针对航空发动机状态时间序列预测中嵌入维数难于有效选取的问题,提出一种基于嵌入维数自适应最小二乘支持向量机(LSSVM)的预测方法.该方法将嵌入维数作为影响状态时间序列预测精度的重要参数,以交叉验证误差为评价准则,利用粒子群优化(PSO)进化搜索LSSVM预测模型的最优超参数与嵌入维数,同时通过矩阵变换原理提高交叉验证过程的计算效率,并最终建立优化后的LSSVM预测模型.航空发动机排气温度(EGT)预测实例表明,该方法可自适应选取适用于状态时间序列预测的最优嵌入维数且预测精度高,适用于航空发动机状态时间序列预测.  相似文献   

6.
张弦  王宏力
《航空学报》2010,31(12):2309-2314
 针对航空发动机状态时间序列预测中嵌入维数难于有效选取的问题,提出一种基于嵌入维数自适应最小二乘支持向量机(LSSVM)的预测方法。该方法将嵌入维数作为影响状态时间序列预测精度的重?问?以交叉验证误差为评价准则,利用粒子群优化(PSO)进化搜索LSSVM预测模型的最优超参数与嵌入维数,同时通过矩阵变换原理提高交叉验证过程的计算效率,并最终建立优化后的LSSVM预测模型。航空发动机排气温度(EGT)预测实例表明,该方法可自适应选取适用于状态时间序列预测的最优嵌入维数且预测精度高,适用于航空发动机状态时间序列预测。  相似文献   

7.
基于支持向量机方法的发动机性能趋势预测   总被引:8,自引:3,他引:8       下载免费PDF全文
为了提高对航空发动机性能趋势预测的精度,提出利用支持向量机方法来预测表征发动机整体性能的参数一性能综合指数。建立了基于支持向量回归的一步及多步预测模型,利用该模型对性能正常衰退及性能异常发动机的综合指数分别进行预测,并与自回归(AR)模型的预测值进行比较。结果表明,基于支持向量机的预测模型比AR模型的预测精度更高,其四步预测精度由80.56%提高到88.51%。因此该模型尤其适合中、长期预测。  相似文献   

8.
时间序列广泛存在于工业、经济、军事等各个领域,时间序列预测是数据分析处理的一个重要方面。目前提出的预测模型大多基于"原始时间序列是无噪的"这一假定,而实际应用中,对时间序列去噪处理的好坏将直接影响预测的准确率,针对这一事实,使用小波分析对原始时间序列去噪。利用小波变换对时间序列进行多尺度分解,对各尺度上的细节序列使用阀值法去噪;使用支持向量机对重构后的各组小波系数进行预测并将结果融合,得到预测结果。实验结果表明,用于时间序列预测,能及时反应序列的变化趋势并具有较高的预测精度。  相似文献   

9.
为改善直接支持向量回归机(DSVMR)的稀疏性,提出一种适用于DSVMR的剪样训练算法.该算法利用矩阵变换实现剪样前后DSVMR的递推求解,提高了剪样训练过程中DSVMR多次训练的计算效率.混沌时间序列预测仿真表明,该算法有效改善了DSVMR的稀疏性,且计算效率较基于Cholesky分解的剪样训练算法有显著提高.飞机故障率预测实例表明,经剪样训练后的DSVMR的预测精度高于BP(back-propagation)神经网络预测方法与RBF(radial casis function)神经网络预测方法.  相似文献   

10.
针对航空发动机起动建模中压气机低转速特性计算精度较低的问题,提出了指数外推法和支持向量机(SVM)相结合的特性扩展计算方法.首先分析了指数外推法的计算方法及其局限性,然后将压气机已知的高转速特性作为SVM的训练集,以指数外推法获取的低转速特性作为测试集,同时将压气机特性转换为按出口气流参数表示以降低SVM原始数据的非线性,利用交叉验证算法选择SVM参数并进行模型训练,预测并获得压气机低转速特性.通过与单纯使用指数外推法获取的特性对比分析表明:指数外推法和SVM相结合的压气机特性扩展计算方法,最大相对误差减小了约2.8%,有效提高了特性扩展计算精度.   相似文献   

11.
基于模糊支持向量机的飞机飞行动作识别   总被引:9,自引:0,他引:9  
杨俊  谢寿生 《航空学报》2005,26(6):738-742
传统的支持向量机由两类扩展到多类问题时,出现不可分区域。针对飞行动作识别提出解决这一现象的模糊支持向量机。采用模糊支持向量机对某型飞机飞行动作进行识别。实际飞参数据(6种飞行动作模式)的识别结果表明,模糊支持向量机较传统的多类支持向量分类器在飞机飞行动作识别率上有显著提高。  相似文献   

12.
为了研究单矢量水听器多目标方位估计能力,分别利用互谱声强法、MUSIC算法及信号统计量方法对多个目标方位进行估计。互谱声强法可以估计出多个不同频的单频目标方位,但对于频谱混叠的目标无法分辨;MUSIC算法可以分辨单频和宽带目标,但利用单矢量水听器最多可估计 2个目标方位。为此,针对文章提出的信号统计量方法,构建了声压和振速的统计量模型,将其与粒子群优化算法及改进算法相结合,实现了基于改进粒子群算法的多目标方位估计。对多个单频和宽带信号目标进行仿真分析,结果表明,进粒子群算法具有良好的估计效果;对 3种方法的估计结果进行比较,验证了改进粒子群算法有较好的适用性。通过对 2022年千岛湖试验数据的处理再一次验证了算法的有效性。  相似文献   

13.
基于支持向量机的航空发动机滑油监控分析   总被引:17,自引:3,他引:17  
提出了一种基于支持向量机的航空发动机滑油金属含量预测方法。详细分析了支持向量机用于时间序列预测的理论基础,并给出了运用支持向量回归进行多步预测的一般公式,提出了用最终预报误差(FPE)准则优化选取嵌入维数。与传统的AR预测模型相比,支持向量机由于采用了新型的结构风险最小化准则表现出优秀的推广能力。经过数值仿真得出自回归(AR)模型仅适合于短期预测;支持向量机预测推广能力强、具有较强的鲁棒性和容错性,对较长区间预测仍具有较好的效果。最后,将其应用于某型发动机滑油的铁金属含量预测,取得了较好的效果。   相似文献   

14.
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.  相似文献   

15.
基于粒子群算法的翼型优化设计   总被引:2,自引:0,他引:2  
采用粒子群算法(PSO)对层流翼型进行了以提高升阻比为目标的优化设计。翼型的设计达到了设计要求,优化设计后的翼型气动特性也有显著地改善,这表明了粒子群算法应用于翼型气动优化设计的可行性。在优化设计的过程中,粒子采用递减惯性权重,以加强粒子初期的全局搜索能力与后期的局部搜索能力。翼型由解析函数线性叠加法表示,目标函数和粒子的适应度由基于二维欧拉方程的流场数值解来提供。  相似文献   

16.
高峰  朱凡  吴博  祁圣英 《航空计算技术》2004,34(4):17-19,23
对滑油系统进行监控和技术诊断,可提前发现旋转机械系统的内部故障,为预测系统部件使用寿命和可靠性提供有力依据。对某大型旋转机械滑油监控系统中需重点监控的金属元素含量建立了基于支持矢量回归的时间序列预测模型,并根据该模型对该系统铜元素含量变化趋势进行了预测分析,取得了较好的效果。  相似文献   

17.
针对制导火箭弹滑翔增程问题,文章提出了以攻角为优化变量的解决方法;基于火箭弹的四自由度模型,结合粒子群优化算法,提出了火箭弹射程优化模型并建立了约束条件。对某制导火箭弹弹道进行优化仿真,所得到的结果表明:通过控制火箭弹攻角的变化规律,能够有效增加火箭弹的射程。因此,文章所提出的攻角控制方法是可行的。  相似文献   

18.
基于支持向量经验模态分解的故障率时间序列预测   总被引:1,自引:0,他引:1  
张弦  王宏力 《航空学报》2011,32(3):480-487
 针对故障率时间序列的非线性与非平稳特性,提出一种基于支持向量经验模态分解(SVEMD)的预测方法。首先,将故障率时间序列分解为多个固有模态函数(IMF)与一个余量(RF),利用最小二乘支持向量机(LSSVM)预测时间序列两端的局部极值点,以抑制传统经验模态分解(EMD)的边缘效应;同时以LSSVM回归方式形成包络线,以取代传统EMD中的三次样条插值;然后,建立各IMF与RF的预测模型;最终,将各IMF与RF的预测结果相加以获得故障率时间序列的预测结果。仿真结果表明,该方法的预测精度较传统基于EMD的预测方法与单一预测方法有显著提高,可实现对故障率的准确预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号