首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种直动式二维(Two Dimensional,2D)电液压力伺服阀,采用2D伺服活塞机构产生液压力来驱动主阀芯运动,输出需要的负载压力。设计的2D伺服活塞机构采用直线位移传感器(Linear Variable Differential Transformer,LVDT)进行检测从而形成闭环位置反馈,精确控制2D活塞位移;主阀芯与2D伺服活塞通过弹簧连接,2D活塞在两侧压力差作用下运动,通过弹簧来对主阀芯施加作用,控制主阀阀口的开度,来精确控制输出的负载压力;为提高压力伺服阀的稳定性和可靠性,主阀阀芯根据挤压油膜缓冲理论进行了圆盘结构设计,以增大系统黏性阻尼。在建立该阀的数学模型的基础上,仿真分析了该阀的静动态特性,并通过设计样阀及实验研究,验证了该阀设计的可行性,实验结果表明:在系统压力28 MPa下,该阀的阶跃响应时间在30ms,其滞环3%,线性度2%,压力跟随特性和输出稳定性好;相较于传统直动式比例伺服压力阀,该阀的结构特点决定了其抗污染能力强,可靠性高,且质量和体积分别仅为同类伺服阀的1/5和1/7左右,非常适用于机载液压刹车系统。  相似文献   

2.
对某型伺服机构系统压力脉动量大的原因进行分析,确认为油泵、高压管路、溢流阀之间存在频率特性的耦合现象,激发溢流阀发生谐振.针对频率耦合的特性,提出在高压管路上安装节流块的措施,试验验证表明方案简单有效,系统压力脉动量由改进前的4MPa降低至0.8MPa左右.  相似文献   

3.
超磁致伸缩执行器驱动的射流伺服阀参数优化   总被引:1,自引:0,他引:1  
为提高射流伺服阀的性能,提出了一种超磁致伸缩执行器驱动的直动式射流伺服阀.采用磁场有限元分析的方法,建立了超磁致伸缩执行器输出电流与输出位移的关系,分析了线圈结构对其输出位移的影响,并给出了所设计执行器的实验曲线.结合所设计的射流伺服阀的特点,以能量传递效率最大为优化目标,建立了射流结构与射流效率的关系方程,求出了所设...  相似文献   

4.
叶林  刘存良  杨寓全 《推进技术》2020,41(9):2077-2087
为探究布置直肋扰流结构的尾缘半劈缝冷却结构的气膜冷却特性,分别采用压力敏感漆技术和瞬态热色液晶技术研究了直肋对扩张型尾缘半劈缝表面的绝热气膜效率和对流换热系数的影响,详细对比分析了吹风比及直肋宽度对三种不同扩张型半劈缝表面的气膜冷却特性。实验结果表明:直肋的加入对小扩张型半劈缝表面的气膜覆盖产生了不利影响,但仅限在小吹风比工况;而直肋对大扩张型半劈缝表面的气膜覆盖有略小的促进作用,但其绝热气膜效率始终低于小扩张型半劈缝表面。肋宽对半劈缝表面的换热增强大小受半劈缝表面形状影响,随着半劈缝表面扩张程度的增大,宽直肋结构的高换热优势逐渐超越窄直肋结构。直肋型尾缘半劈缝冷却结构可有效提升1.45~2倍的壁面热流密度,小吹风比工况时宜选用带有窄直肋的扩张程度较小的半劈缝表面结构,而大吹风比时宜选用带有宽直肋的扩张程度较大的半劈缝表面结构。  相似文献   

5.
为了抑制混流式水轮机在部分负荷工况下的压力脉动,在尾水管直锥段设置鳍片是一种可取的工程措施。本文基于数值模拟方法细致考察了设置鳍片对混流式水轮机尾水管内部流动及压力脉动的影响。结果表明:鳍通过改变鳍周围的速度和压力分布,并作用于涡的演变过程,进而影响尾水管中的涡带运动和压力脉动。在非空化工况下,鳍表面产生的附鳍小涡带起到稳定压力场的作用,降低了尾水管直锥段的压力脉动;而附鳍小涡带与主流区涡带的相互作用则恶化了尾水管弯肘段的流动,反而使得弯肘段压力脉动略微回升;在空化工况下,尾水管壁面加鳍显著降低涡带规模和空泡体积,使得尾水管的压力脉动得到明显削弱。  相似文献   

6.
陆亮  夏飞燕  訚耀保  原佳阳  方向 《航空学报》2018,39(10):422143-422143
针对在研的小球式旋转直驱压力伺服阀(Ball-type Rotary Direct Drive Pressure Servo Valve,BRDDPSV)阶跃响应超调量大、调整时间长等不稳定现象,建立了数学模型,分析了结构参数和电控方法对整阀动态特性的影响。理论分析表明:结构参数方面,减小阀芯直径、减小滑阀负遮盖量或将小球-柱形孔运动副改为小过盈配合均可提高整阀响应的稳定性;控制方法方面,在原有PI控制的基础上,采用积分分离可有效抑制控制压力动态响应的超调量,增加动压反馈校正可有效缩短控制压力动态响应的调整时间。优化选取结构参数和电控方法后,进行样机试验,整阀控制压力阶跃响应的超调量小于0.5 MPa(系统压力21 MPa),调整时间约30 ms,能够满足飞机刹车压力伺服阀的使用需求。  相似文献   

7.
绕平板上直圆柱体的高超声速湍流分离流   总被引:2,自引:0,他引:2  
本文给出直圆柱上游中心线上壁面压力和热流特性及其分离激波运动的特征参数。试验条件是:自由流马赫数为7.8和5,单位长度雷诺数为3.5×10~7/米和4.7×10~7/米。结果表明:1.直圆柱上游中心线上的流场是一个有二次分离的流场,平均壁面压力分布呈双峰型,平均热流分布略有不同,出现一近似平台区,但在分离激波上游影响起始区域和直圆柱前缘邻近区域(x/D<0.5),两者变化极其相似。来流马赫数愈高,分离激波在中心线上的上游影响区长度和峰压及峰热值愈大。2.分离激波是极其不稳定的,出现大尺度低频运动,激波流向运动尺度约0.5D,振荡频率主要集中在2.5kHz以下。  相似文献   

8.
直混燃烧与LPP组合燃烧室数值研究   总被引:4,自引:6,他引:4  
刘强  索建秦  梁红侠  黎明  李瀚 《航空动力学报》2012,27(11):2448-2454
设计了直混燃烧与贫油预混预蒸发(LPP)组合的单管燃烧室.燃烧室头部采用同轴同旋向主模旋流器和副模旋流器结构,主、副油路分别采用直射式喷嘴和压力雾化喷嘴,可以在单管燃烧室上掌握和实现低污染燃烧排放控制技术,并采用Fluent软件对设计的单管燃烧室模型进行数值模拟.计算结果表明:主副模燃烧区相互独立;副模是直混燃烧,主要作用稳定火焰.主模是预混燃烧,燃烧区温度分布均匀,从而实现低NOx排放.解决了大工况下低NOx排放与慢车贫油熄火之间的矛盾.   相似文献   

9.
基于直动电磁阀的气压控制是结构最为简单的控制系统,为确保其具有稳定、快速的控制输出,应考虑气容延时环节和电磁阀增益等影响因素。文章首先介绍了基于电磁阀的自动气压控制系统结构,分析了系统工作过程;然后在对各功能部件进行理论简化的基础上,给出系统数学模型;其次建立了基于连续系统的仿真结构,就延时环节、电磁阀增益、气源压力等影响因素进行了仿真分析。仿真结果表明,这种简单控制系统仅适用于小容积、低速、低精度气压控制系统,并需要在系统响应快速性和稳定性间进行取舍。  相似文献   

10.
波形隔板形状对通道流动和换热的影响   总被引:1,自引:0,他引:1  
采用数值模拟的方法,对基于波形隔板结构涡轮叶片尾缘复合通道的换热和流阻特性进行研究.设计了一种直隔板和三种不同折角的波形隔板结构,研究波形角度对通道中流动和换热的影响.数值结果表明,波形隔板结构折角越小,对整个通道,换热越好,尤其是对于第1通道,换热增强最大可达30%;同时折角越小,通道的流阻系数越大;从换热和流阻的综合效果来看,150°折角波形隔板结构和直隔板结构(180°折角)相当,120°折角和90°折角波形隔板结构的综合换热效果比直隔板结构的略大.   相似文献   

11.
以某型航空发动机的实际涡轮叶片内部的带肋变截面180°回转通道为研究对象,以实验的方法分别研究了带90°直肋和带60°斜肋的通道内的流体流动的特性。根据研究问题的特点,定义了壁面有效压力及局部有效压力系数,并得到了其沿程分布及两种通道内有效压力系数的经验公式。实验发现,对于带90°直肋和带60°斜肋的矩形回转通道沿程有效压力的分布趋势基本一致,由于流道截面积的不规则变化,导致有效压力有沿程逆增现象。   相似文献   

12.
将航空发动机高压涡轮叶片内冷通道进行简化,以实验方法研究了带90°直肋及气膜出流的变截面回转通道内冷气的流动特性。根据肋和气膜孔的结构特点,将通道划分为若干个特征单元。结果表明:与无气膜出流时相比,通道出口段存在气膜出流时其有效压力分布发生了较大的变化,使得整个出口通道的有效压力下降,在气膜孔附近压力下降更为明显。在其他条件不变时,与单元内其他位置的气膜孔相比肋后气膜孔出流量较大。   相似文献   

13.
大转角反弯叶栅气膜冷却实验研究   总被引:2,自引:1,他引:1  
对大转折角气冷涡轮直、反弯叶栅出口流场进行了不同位置10排孔喷气及多排孔喷气等26套冷却方案测量。结果表明,无冷气喷射时反弯叶栅内损失高于直叶栅;压力面、吸力面近尾缘处喷气可降低叶栅损失;反弯叶栅前部多排孔气膜冷却的损失增加值要低于直叶栅,后部多排孔喷气则可降低叶栅损失。   相似文献   

14.
分开排气大涵道比涡扇发动机高空模拟试验排气布局评估   总被引:1,自引:0,他引:1  
为评估分开排气大涵道比涡扇发动机高空模拟试验的排气特性,采用数值仿真方法,对分开排气发动机高空模拟试验时配备的排气扩压器的结构进行分析。主要从发动机尾锥与排气扩压器入口距离、排气扩压器结构尺寸、舱内压力模拟偏差及次流四方面影响进行排气特性计算,并以发动机设计推力进行检验。结果表明:该发动机进行高空模拟试验时,排气扩压器直径应不小于3.5 m,排气扩压器直段长度不小于9.0 m,发动机尾锥与排气扩压器入口距离以0.85倍扩压器直段直径为宜;发动机飞行包线的巡航点和左边界点的推力偏差,均随模拟舱压偏差绝对值的增大而增大,但巡航点推力变化斜率较大。  相似文献   

15.
在低 Ma情况下 ,对两种方案的排气扩压器和排气管 1/ 5模型进行了试验与研究。一种是大扩压角内有分割锥的扩压器 ;一种是小角度扩压器 ,其扩压比分布在直扩压段和转向叶片两个部分上。得出了不同的试验结果 ,同时对一方案的不同结构分别测定了压力损失系数和总压恢复系数 ,并进行了分析。文中引用了 Sovron等人推荐的曲线进行研究 ,又解释了预旋叶片的作用 ,得出一些有益的设计思想。  相似文献   

16.
燃烧室长度对固体燃料超燃冲压发动机燃烧室性能的影响   总被引:2,自引:0,他引:2  
基于国外研究者完成的固体燃料超燃冲压发动机的实验数据,通过分别改变燃烧室等直段长度和扩张段长度,对不同总长的燃烧室工作过程进行数值模拟.采用基于压力的2阶迎风差分数值方法,物理模型为轴对称结构,燃烧模型采用有限速率/涡耗散模型(finite-rate/eddy-dissipation),湍流模型采用SST(shear stress transport) k-ω模型.聚甲基丙烯酸甲酯(PMMA)燃料进口边界由用户自定义函数的方式给定,分别分析了不同长度,即不同等直段长度或扩张段长度下超燃冲压发动机燃烧室内流场特性及其性能变化.结果表明:随着等直段长度的增大,燃烧室出口处燃烧效率逐渐减小,从72.74%降低至66.81%,而燃烧室内总压损失逐渐减小,燃烧室推力逐渐增大,可由85.83N增加至108.55N;改变扩张段长度,发现扩长段长度变化对燃烧室流场结构的影响较小,随着扩张段长度的增大,燃烧室出口燃烧效率和燃烧室推力都略微减小.在燃烧室长度的设计范围内,增大等直段的长度要比增大扩张段长度对提升燃烧室各项性能有帮助.   相似文献   

17.
应用CFD方法对不同收缩型面设计方案进行了数值模拟,并对结果进行了对比分析。结果表明:①采用伯努利双扭线进气结构,收缩段后直段区域径向马赫数梯度较大,收缩段出口附近壁面静压变化剧烈,压力损失较大;②无伯努利双扭线进气结构,双三角函数收缩型面(DTC)壁面静压变化率较小;③不同工况下,伯努利双扭线和圆柱-四次曲线-圆锥-四次曲线组合收敛曲线(CQCQ)型线组合、伯努利双扭线和DTC型线组合、仅CQCQ型线、仅DTC型线四种结构,壁面附面层厚度在收缩段出口基本一致;④进行大流量发动机试验,高空台可参考选用仅CQCQ型线和仅DTC型线作为亚声速进气结构。  相似文献   

18.
具有叶顶间隙的涡轮正弯叶栅流场的拓扑与旋涡结构   总被引:2,自引:0,他引:2  
为进一步揭示在具有间隙的涡轮叶栅中叶片正弯降低泄漏损失的机理,采用微型束状与球头五孔测针详细测量了直叶栅和正弯叶栅间隙内和诸横截面流场听气动参数,并对壁面进行了墨迹显示。根据测量与显示结果,应用拓扑学原理分析了壁面与横截面流动的拓扑结构,推测出叶栅内流场的旋涡结构。分析结果表明,在直叶栅中存在着七条分离线与七大集中涡系,它们分别为上端壁叶顶进口吸力边与压力边马蹄涡,泄漏损失的机理,下端壁进口边马蹄  相似文献   

19.
夏子龙  王锁芳 《推进技术》2020,41(6):1276-1285
为分析进口流量对压气机引气系统无管式减涡器压力损失的影响及无管式减涡器减阻效果,采用数值模拟与试验研究相结合的方法对无管式减涡器开展研究,并与直喷嘴模型进行了对比。模型试验验证了数值模拟方法的可靠性,通过数值模拟,建立了无管式减涡器流阻特性"S"形曲线三分区模型,分析了无管式减涡器各截面间压力损失及其占比随无量纲质量流量变化规律。在计算流量范围内,与直喷嘴模型相比,无管式减涡器平均可降低压气机引气系统压力损失约45.9%。在第二拐点处,共转盘腔内压力损失降低了96.44%,此时无管式减涡器减阻效果最佳,较直喷嘴模型压力损失降低了73.44%。  相似文献   

20.
在 2 0 0 0年中国国际航空航天博览会上 ,哈尔滨东安发动机 (集团 )有限公司的 16种直升机传动系统整机、零部件和一个燃机发电机组模型参加了展览。展品中 ,直 8主减速器是我国生产的最大吨位和最大功率的直升机主减速器。它体积大 ,精度高 ,传递的最大功率达到 30 0 0kW ;直 9型机传动系统具有体积小、重量轻、传递功率大等特点 ,主减速器的总重量只有 182kg ;直 11型机传动系统结构精巧、可靠性高、便于维修 ;直升机传动系统的各种零部件 (如 :直 8和直 9的主减机匣、固定齿圈、主旋翼轴等 )的铸造、齿轮加工和表面喷涂等技术在国内…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号