首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Influence of Total Solar Irradiance on Climate   总被引:7,自引:0,他引:7  
Cubasch  U.  Voss  R. 《Space Science Reviews》2000,94(1-2):185-198
To estimate the effect of the solar variability on the climate, two estimates of the solar intensity variations during the last three centuries have been used as forcing in numerical simulations. The model employed to carry out the experiments was the same coupled global ocean-atmosphere model used in a number of studies to assess the effect of the anthropogenic greenhouse gases on climate. The near surface temperature and the tropospheric temperature distribution shows a clear response to the variability of the solar input. Even the thermohaline circulation reacts on the large amplitudes in the forcing. In the stratosphere, the response pattern is similar as in the observations, however, the 11-year cycle found in the forcing data does not excite an appreciable response. This might be due to the missing parameterisation of the increase in the UV-radiation at the solar cycle maximum and the connected increase of the stratospheric ozone concentration.  相似文献   

2.
The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (~100,000 years), the obliquity (angle between the equator and the orbital plane) (~40,000 years) and the precession of the Earth’s axis (~20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.  相似文献   

3.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   

4.
Solar variability influences the climate of a planet by radiatively forcing changes over a certain timescale; orbital variations of a planet, which yield similar solar forcing modulations, can be studied within the same scientific context. It is known for Earth that obliquity changes have played a critical role in pacing glacial and interglacial eras. For Mars, such orbital changes have been far greater and have generated extreme variations in insolation. Signatures associated with the presence of water ice reservoirs at various positions across the surface of Mars during periods of different orbital configurations have been identified. For this reason, it has been proposed that Mars is currently evolving between ice ages. The advent of climate tools has given a theoretical frame to the study of orbitally-induced climate changes on Mars. These models have provided an explanation to many puzzling observations, which when put together have permitted reconstruction of almost the entire history of Mars in the last 10 million years. This paper proposes to give an overview of the scientific work dedicated to this topic.  相似文献   

5.
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets.  相似文献   

6.
The climate response to changes in radiative forcing depends crucially on climate feedback processes, with the consequence that solar and greenhouse gas forcing have both similar response patterns in the troposphere. This circumstance complicates significantly the attribution of the causes of climate change. Additionally, the climate system displays a high level of unforced intrinsic variability, and significant variations in the climate of many parts of the world are due to internal processes. Such internal modes contribute significantly to the variability of climate system on various time scales, and thus compete with external forcing in explaining the origin of past climate extremes. This highlights the need for independent observations of solar forcing including long-term consistent observational records of the total and spectrally resolved solar irradiance. The stratospheric response to solar forcing is different from its response to greenhouse gas forcing, thus suggesting that stratospheric observations could offer the best target for the identification of the specific influence of solar forcing on climate.  相似文献   

7.
Studies based on data from the past 25–45 years show that irradiance changes related to the 11-yr solar cycle affect the circulation of the upper troposphere in the subtropics and midlatitudes. The signal has been interpreted as a northward displacement of the subtropical jet and the Ferrel cell with increasing solar irradiance. In model studies on the 11-yr solar signal this could be related to a weakening and at the same time broadening of the Hadley circulation initiated by stratospheric ozone anomalies. Other studies, focusing on the direct thermal effect at the Earth’s surface on multidecadal scales, suggest a strengthening of the Hadley circulation induced by an increased equator-to-pole temperature gradient. In this paper we analyse the solar signal in the upper troposphere since 1922, using statistical reconstructions based on historical upper-air data. This allows us to address the multidecadal variability of solar irradiance, which was supposedly large in the first part of the 20th century. Using a simple regression model we find a consistent signal on the 11-yr time scale which fits well with studies based on later data. We also find a significant multidecadal signal that is similar to the 11-yr signal, but somewhat stronger. We interpret this signal as a poleward shift of the subtropical jet and the Ferrel cell. Comparing the magnitude of the two signals could provide important information on the feedback mechanisms involved in the solar climate relationship with respect to the Hadley and Ferrel circulations. However, in view of the uncertainty in the solar irradiance reconstructions, such interpretations are not currently possible.  相似文献   

8.
Numerous attempts have been made over the years to link various aspects of solar variability to changes in the Earth's climate. There has been growing interest in this possible connection in recent years, spurred largely by the need to understand the natural causes of climate change, against which the expected global warming due to man's activities will have to be detected. The time scale of concern here is that of decades to centuries, and excludes the longer millennial scale in which orbital variations play a dominant role. The field has long been plagued by the lack of an acceptable physical mechanism by which solar variability can affect climate, but the discovery of variability in the Sun's total irradiance (the solar ``constant' of meteorology) by spacecraft instruments has pointed to a direct mechanism. Other less direct mechanisms that have been suggested involve variations in the Sun's ultraviolet flux and in the plasma outflow of the solar wind. The purpose of this paper is to summarize the current state of the field, emphasizing the proposed mechanisms as an introduction to the more detailed papers that follow. The particular case of sea-surface temperature data will be used as an illustration.  相似文献   

9.
Cosmogenic radionuclides are more and more used in solar activity reconstructions. However, the cosmogenic radionuclide signal also contains a climate component. It is therefore crucial to eliminate the climate information to allow a better interpretation of the reconstructed solar activity indices. In this paper the method of principal components is applied to 10Be data from two ice cores from opposite hemispheres as well as to 14C data from tree rings. The analysis shows that these records are dominated by a common signal which explains about 80% of the variance on multi decadal to multi millennial time scales, reflecting their common production rate. The second and third components are significantly different for 14C and 10Be. They are interpreted as system effects introduced by the transport of 10Be and 14C from the atmosphere where they are produced to the respective natural archives where they are stored. Principal component analysis improves significantly extraction of the production signal from the cosmogenic isotope data series, which is more appropriate for astrophysical and terrestrial studies.  相似文献   

10.
Evidence suggests that changes of solar irradiance in recent centuries have provided a significant climate forcing and that the sun has been one of the principal causes of long-term climate change. During the past two decades the solar forcing has been much smaller than the climate forcing caused by increasing greenhouse gases. But it is incorrect to assume that the sun necessarily will be an insignificant player in climate change of the 21st century. Indeed, I argue that moderate success in curtailing the growth of anthropogenic climate forcings could leave the sun playing a pivotal role in future climate change.  相似文献   

11.
A coupled climate model is used to explore the regional response of the climate system to solar forcing, with emphasis on the role of the ocean. It is shown that both the transient and the equilibrium response of surface temperature to changes in total solar irradiation is smaller over ocean than over land because of the ocean’s large heat capacity and the feedback involving evaporation. Furthermore, the advection of temperature anomalies and changes in ocean currents have an impact on the timing and the geographical distribution of the response. Nevertheless, at regional scales, the response to the forcing is embedded within the large internal variability of the system making the detection and analysis of the forced response difficult. Furthermore, this forced response could imply both changes in the mean state of the system as well as in its variability.  相似文献   

12.
Stott  P.A.  Tett  S.F.B.  Jones  G.S.  Allen  M.R.  Ingram  W.J.  Mitchell  J.F.B. 《Space Science Reviews》2000,94(1-2):337-344
We analyse spatio-temporal patterns of near-surface temperature change to provide an attribution of twentieth century climate change. We apply an ``optimal detection' methodology to seasonal and annual data averaged over a range of spatial and temporal scales. We find that solar effects may have contributed significantly to the warming in the first half of the century although this result is dependent on the reconstruction of total solar irradiance that is used. In the latter half of the century, we find that anthropogenic increases in greenhouses gases are largely responsible for the observed warming, balanced by some cooling due to anthropogenic sulphate aerosols, with no evidence for significant solar effects.  相似文献   

13.
14.
以某涡扇发动机的过渡态性能模拟为研究对象 ,建立了过渡过程中零部件与气流之间的不稳定热交换、由于热交换引起的间隙变化以及引起的部件效率变化的数学模型 ,并且将此模型引入面向对象的航空涡扇发动机过渡过程性能模拟程序的框架中。通过计算分析 ,零部件与气流之间的热交换对发动机过渡过程性能有显著影响 ;过渡过程叶尖间隙的变化引起的部件效率损失是不容忽视的。上述模型的建立将有效的提高涡扇发动机过渡过程性能模拟程序的精度  相似文献   

15.
Haarsma  R.J.  Drijfhout  S.S.  Opsteegh  J.D.  Selten  F.M. 《Space Science Reviews》2000,94(1-2):287-294
The impact of variations in solar irradiance on the variability of climate is still a topic of debate. Herein we assess the response of a coupled General Circulation Model (GCM) of intermediate complexity to an estimate of the solar variability since 1700 and to a series of idealized sinusoidal solar forcings. On the continental to global scale and averaged over periods longer than 30 years, the solar-induced variability dominates internal variability in the annual global mean surface air temperature. Locally and on the regional scale, the internal variability dominates. The dominant patterns of natural variability and explained variance are not affected by a variable solar forcing, the spectra however are sensitive. The control run shows a preferred decadal time scale of 18 year in a sea surface temperature mode associated with the North Atlantic Oscillation. The preferred decadal time scale disappears for a variable solar forcing. This is caused by small changes in oceanic circulation resulting in subsurface oceanic modes with modified structure and time scale.  相似文献   

16.
The nature of the climatic response to solar forcing and its geographical coherence is reviewed. This information is of direct relevance for evaluating solar forcing mechanisms and validating climate models. Interpretation of Sun-climate relationships is hampered by difficulties in (1) translating proxy records into quantitative climate parameters (2) obtaining accurate age assessments (3) elucidating spatial patterns and relationships (4) separating solar forcing from other forcing mechanisms (5) lacking physical understanding of the solar forcing mechanisms. This often limits assessment of past solar forcing of climate to identification of correlations between environmental change and solar variability. The noisy character and often insufficient temporal resolution of proxy records often exclude the detection of high frequency decadal and bi-decadal cycles. However, on multi-decadal and longer time scales, notably the ∼90 years Gleisberg, and ∼200 years Suess cycles in the 10Be and 14C proxy records of solar activity are also well presented in the environmental proxy records. The additional ∼1500 years Bond cycle may result from interference between centennial-band solar cycles. Proxy evidence for Sun-climate relations is hardly present for Africa, South America and the marine realm; probably more due to a lack of information than a lack of response to solar forcing. At low latitudes, equatorward movement of the ITCZ (upward component of the Hadley cell) occurs upon a decrease in solar activity, explaining humidity changes for (1) Mesoamerica and adjacent North and South American regions and (2) East Africa and the Indian and Chinese Monsoon systems. At middle latitudes equatorward movement of the zonal circulation during solar minima probably (co-)induces wet and cool episodes in Western Europe, and Terra del Fuego as well as humidity changes in Southern Africa, Australia, New Zealand and the Mediterranean. The polar regions seem to expand during solar minima which, at least for the northern hemisphere is evident in southward extension of the Atlantic ice cover. The forcing-induced migration of climate regimes implies that solar forcing induces a non linear response at a given location. This complicates the assessment of Sun-climate relations and calls for nonlinear analysis of multiple long and high resolution records at regional scale. Unfortunately nonlinear Sun-climate analysis is still a largely barren field, despite the fact that major global climate configurations (e.g. the ENSO and AO) follow nonlinear dynamics. The strength of solar forcing relative to other forcings (e.g. volcanism, ocean circulation patterns, tides, and geomagnetism) is another source of dynamic responses. Notably the climatic effects of tides and geomagnetism are hitherto largely enigmatic. Few but well-dated studies suggest almost instantaneous, climatic deteriorations in response to rapid decreases in solar activity. Such early responses put severe limits to the solar forcing mechanisms and the extent of this phenomenon should be a key issue for future Sun-climate studies.  相似文献   

17.
The spinning deployment process of solar sails is analyzed in this study.A simplified model is established by considering the out-of-plane and in-plane motions of solar sails.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails.The finite element model of solar sails is then established,which contains continuous cables and sail membranes.The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses,initial velocities,and control parameters.Compared with the results from theoretical models,simulation results show good agreements.  相似文献   

18.
Cosmic Rays,Clouds, and Climate   总被引:5,自引:0,他引:5  
Marsh  Nigel  Svensmark  Henrik 《Space Science Reviews》2000,94(1-2):215-230
A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (>273K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (1%) a liquid cloud drop will only form in the presence of an aerosol, which acts as a condensation site. The droplet distribution of a cloud will then depend on the number of aerosols activated as cloud condensation nuclei (CCN) and the level of super saturation. Based on observational evidence it is argued that a mechanism to explain the cosmic ray-cloud link might be found through the role of atmospheric ionisation in aerosol production and/or growth. Observations of local aerosol increases in low cloud due to ship exhaust indicate that a small perturbation in atmospheric aerosol can have a major impact on low cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability in cosmic ray intensities. Such changes are in agreement with the sign of cloud radiative forcing associated with cosmic ray variability as estimated from satellite observations.  相似文献   

19.
Lunar soil and certain meteorites contain noble gases trapped from the solar wind at various times in the past. The progress in the last decade to decipher these precious archives of solar history is reviewed. The samples appear to contain two solar noble gas components with different isotopic composition. The solar wind component resides very close to grain surfaces and its isotopic composition is identical to that of present-day solar wind. Experimental evidence seems by now overwhelming that somewhat deeper inside the grains there exists a second, isotopically heavier component. To explain the origin of this component remains a challenge, because it is much too abundant to be readily reconciled with the known present day flux of solar particles with energies above those of the solar wind. The isotopic composition of solar wind noble gases may have changed slightly over the past few Ga, but such a change is not firmly established. The upper limit of ~5% per Ga for a secular increase of the 3He/4He ratio sets stringent limits on the amount of He that may have been brought from the solar interior to the surface (cf. Bochsler, 1992). Relative abundances of He, Ne, and Ar in present-day solar wind are the same as the long term average recorded in metallic Fe grains in meteorites within error limits of some 15-20%. Xe, and to a lesser extent Kr, are enriched in the solar wind similar to elements with a first ionisation potential < 10 eV, although Kr and Xe have higher FIPs. This can be explained if the ionisation time governs the FIP effect (Geiss and Bochsler, 1986). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
This paper studies the response of the middle atmosphere to the 11-year solar cycle. The study is based on numerical simulations with the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), a chemistry climate model that resolves the atmosphere from the Earth’s surface up to about 250 km. Results presented here are obtained in two multi-year time-slice runs for solar maximum and minimum conditions, respectively. The magnitude of the simulated annual and zonal mean stratospheric response in temperature and ozone corresponds well to observations. The dynamical model response is studied for northern hemisphere winter. Here, the zonal mean wind change differs substantially from observations. The statistical significance of the model’s dynamical response is, however, poor for most regions of the atmosphere. Finally, we discuss several issues that render the evaluation of model results with available analyses of observational data of the stratosphere and mesosphere difficult. This includes the possibility that the atmospheric response to solar variability may depend strongly on longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号