首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Acta Astronautica》1987,15(5):259-273
The concept of space processing of chemicals, in general, and propellants, in particular, is explored quantitatively. The theoretical parametric calculations are supplemented by a bench scale experiment. It is seen that for several candidate space mission scenarios (recommended by several committees for the near-term future, i.e. 1990–2000 A.D.), space processing of both space resources and Earth-carried resources can make decisive differences in the mission success for a given payload. To fix ideas and to demonstrate trends, the specific case of water splitting to extract oxygen, discard (or use without storage) the resulting hydrogen, and burn Earth-carried non-cryogenic liquid fuel(s) in a simple rocket motor, designed for periodic thrusting, is treated in some detail. Experimental hardware is assembled and demonstrated to perform adequately, besides showing compactness of the space-packaged “capsule” module that is self-contained.Building upon previous studies (Ash et al., IAF-82-210, 1982), the concept of in situ propellant production (ISPP) is reexamined in light of more recent energy and materials technologies. Missions to comets and Mars Sample Return are mentioned as candidate scenarios. The mission duration, reliability-repairability of hardware, resource availability in low Earth orbit (LEO), and the thrust requirements are considered in turn. It is seen that space storage of hydrogen for extended durations (5–10 years) involves problems that require detailed studies, besides involving many presently unanswered issues. A study of the energy option in LEO and in deep space is developed in simple terms. The different solar, radioisotope, and nuclear power sources are mentioned. Storage and handling of raw and processed chemicals are considered.Applications of state-of-the-art technologies are explored using a concept of incremental small steps; this approach would decrease risk and cost yet lead toward fully autonomous energy -processing hardware for future missions. Operations in microgravity and large structure behavior are also mentioned. The paper ends with a brief summary of available options, influences of possible future technologies and breakthroughs, and an examination in light of possible future (beyond 2000 A.D.) missions.  相似文献   

2.
Stephen J. Pyne   《Space Policy》2007,23(3):147-149
The polar regions have often been suggested as surrogates for the exploration and colonization of space. In particular, Antarctica's greater isolation makes it a useful analogue. Its features—abiotic, acultural, alien to human habitation—all echo the regions of interest to contemporary exploration, notably the solar system and the deep oceans. But more than a century of Antarctic experience also suggests that exploration will likely resemble the Renaissance's Great Voyages and their outposts rather than become portals for wholesale colonization. These sites will traffic mostly in information—the spices and luxury goods of interest to their sustaining societies.  相似文献   

3.
Although little progress has recently been made in concrete law, the development of two inter-related declarations regarding detection and reaction to it, has carried matters further. The declarations are summarised. It is time to formulate their principles as a document suitable for discussion within COPUOS, with the intention that eventually the General Assembly should adopt a Declaration of Principles, with the advantages of the status of such a declaration.  相似文献   

4.
The impact of confirmation of life outside the small ecosphere we call Earth will be profound on the terran population as a whole. The “Declaration Of Principles Concerning Activities Following The Detection Of Extraterrestrial Intelligence” and the IAA Position Paper “A Decision Process for Examining the Possibility of Sending Communications To Extraterrestrial Civilizations: A Proposal” provide a firm basis for the development of a new body of space law. It is important that space law design and prepare for implementation of a protocol to guide the nations of the world concerning the search for extraterrestrial intelligence (SETI), through the advice and cooperation of scientists, jurisprudential, philosophical, political and sociological scholars. Through the IAA, the IISL, the United Nations and other organizations, formal documentation should be drafted to encode the Declaration of Principles and IAA Position Paper referred to above. In this way, a body of metalaw can be developed to enable human communication with non-terrestrial life. This paper discusses the philosophical and sociological parameters of terran understanding of our place in the universe which will dramatically impact jurisprudential thought and action in light of the realization of the infinitesimally small niche that humankind occupies. A discussion of these interdisciplinary concerns will be necessary to realize a metalegal approach to interstellar communications and relations.  相似文献   

5.
The development of a fiber based laser architecture will enable novel applications in environments which have hitherto been impossible due to size, efficiency and power of traditional systems. Such a new architecture has been developed by the International Coherent Amplification Network (ICAN) project. Here we present an analysis of utilizing an ICAN laser for the purpose of tracking and de-orbiting hyper-velocity space debris. With an increasing number of new debris from collisions of active, derelict and new payloads in orbit, there is a growing danger of runaway debris impacts. Due to its compactness and efficiency, it is shown that space-based operation would be possible. For different design parameters such as fiber array size, it is shown that the kHz repetition rate and kW average power of ICAN would be sufficient to de-orbit small 1–10 cm debris within a single instance via laser ablation.  相似文献   

6.
Extremophiles thrive in ice, boiling water, acid, the water core of nuclear reactors, salt crystals, and toxic waste and in a range of other extreme habitats that were previously thought to be inhospitable for life. Extremophiles include representatives of all three domains (Bacteria, Archaea, and Eucarya); however, the majority are microorganisms, and a high proportion of these are Archaea. Knowledge of extremophile habitats is expanding the number and types of extraterrestrial locations that may be targeted for exploration. In addition, contemporary biological studies are being fueled by the increasing availability of genome sequences and associated functional studies of extremophiles. This is leading to the identification of new biomarkers, an accurate assessment of cellular evolution, insight into the ability of microorganisms to survive in meteorites and during periods of global extinction, and knowledge of how to process and examine environmental samples to detect viable life forms. This paper evaluates extremophiles and extreme environments in the context of astrobiology and the search for extraterrestrial life.  相似文献   

7.
空间遥操作机器人系统控制参考模型   总被引:3,自引:0,他引:3  
丑武胜  战强 《宇航学报》2003,24(4):378-383
从分析智能系统中智能行为机制人手,研究了智能系统中自组织单元基本结构,基于智能工程中的集成单元结构,提出了遥操作机器人系统的递阶嵌套控制参考模型,并应用到遥操作空间机器人模拟实验中,完成了模拟舱内作业任务,验证了其实用性。  相似文献   

8.
This paper aims to identify and address key determinants of ESDP in space—political, industrial, research, technology and development (RTD) and procurement issues. It refers to different forms of cooperation serving the security and defence objectives of the EuropeanCommunity but organized beyond it (ESA, OCCAR, LoI, BOC, bi -or multilateral cooperation), attempting to define architecture and mechanisms for effective collaboration that could be applied between all members of the “EU 25”.  相似文献   

9.
The governance of space activities in Europe remains an open question, even more so since the adoption of the Lisbon Treaty, and the latest EC document and ESA declaration have revived the debate. This paper considers the strengths and weaknesses of the current governance model, and compares recent French, German, Italian and UK national documents in order to highlight their vision of space governance in Europe. Some elements of agreement emerge but, more interestingly, this comparison highlights their differences, especially with regard to the role of the EU as a supranational actor in the space domain.  相似文献   

10.
The role of telerobotics for space exploration in placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human spaceflight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon L1 or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.  相似文献   

11.
Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.  相似文献   

12.
针对高速集成VPX架构的航天产品研制需求,开展了VPX压接连接器的选用必要性分析、特点介绍、鱼眼端子结构设计和合理的PCB工艺方案设计,完成了高速集成VPX架构的工艺控制流程,开展了PCB孔径尺寸验证、连接器接触阻抗验证、连接器试验样品补充50次插拔试验、结构样机的试验验证和在轨应用验证等工作,结果表明:采用文章所述的PCB工艺方案和VPX架构的工艺控制流程,成功研制并在轨应用了某星载高速集成VPX架构数传智能处理器,充分验证了VPX压接连接器可以满足星载高可靠要求。未来,采用更高速率的VPX压接连接器,通过合理的航天产品工艺方案,研制更高速度和更高集成度的航天产品,进一步提升产品的功能性能。  相似文献   

13.
《Acta Astronautica》2010,67(11-12):1597-1607
Since the first space object was launched into orbit in 1957, humankind has been engaged in a constant effort to realise ever more ambitious plans for space travel. Probably the single most important element in this ongoing evolution is the development of technology capable of transporting large numbers of passengers into outer space on a commercial basis. Within the foreseeable future, space will no longer be the sole domain of professionally trained astronauts or the exceptionally wealthy.The prospects for both suborbital and orbital private human access to space give rise to some interesting and difficult legal questions. It also opens up an exciting opportunity to develop an adequate system of legal regulation to deal with these activities. The existing international legal regimes covering air and space activities are not well suited to large-scale commercial access to space, largely because they were developed at a time when such activities were not a principal consideration in the mind of the drafters. The lack of legal clarity represents a major challenge and must be addressed as soon as possible, to provide for appropriate standards and further encourage (not discourage) such activities.This article will examine some of the more pressing legal issues associated with the regulation of space transportation of passengers on a commercial basis, seen in the light of Article 1 of the Outer Space Treaty of 1967, which states that the ‘exploration and use of outer space […] shall be carried out for the benefit and in the interests of all countries […] and shall be the province of all mankind’. An appropriate balance must be found between the commercial and technological opportunities that will arise and the principles upon which the development of international space law have thus far been based.  相似文献   

14.
We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an “intelligent message” content within these animals’ signals, perhaps not surprising given these species’ social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most “organized” of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.  相似文献   

15.
16.
航天器空间环境效应仿真分析是航天器系统设计分析的重要组成部分。文章对国内外空间环境效应仿真分析软件进行调研总结,指出我国目前尚无系统级空间环境效应仿真分析软件;给出空间环境效应分析的基本流程和软件的基本功能;提出一种七层软件架构;最后介绍了基于该架构实现的微流星体撞击通量计算原型系统及其计算结果。  相似文献   

17.
《Acta Astronautica》2001,48(5-12):711-721
Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system.This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point).Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform order-of-magnitude cost estimates of a near-term human lunar mission.  相似文献   

18.
This paper discusses the possible effects space travel may have on the human reproductive system and on human sexuality.  相似文献   

19.
At present we have only one agreed public policy for handling the detection of an extraterrestrial intelligence (ETI), the ‘First SETI Protocol’ of 1989, which guides action in the immediate aftermath of detection, even though SETI (the Search for Extraterrestrial Intelligence) constitutes an active search for such a detection. The purpose of this paper is to set out areas in which policies might fruitfully be developed, including reviewing the rationale and investment in SETI, handling ETI artefacts, and approaches to direct contact. ‘Negative’ possibilities will be examined, for example, whether an ETI artefact or data should be purposefully destroyed.  相似文献   

20.
A key issue in astrobiological research is identifying target molecules that are unambiguously biological in origin and can be easily detected and recognized. We suggest porphyrin derivatives as an ideal target, because these chromophores are global in distribution and found in virtually all living organisms on Earth, including microorganisms that may approximate the early evolution of life on Earth. We discuss the inherent qualities that make porphyrin ideally suited for astrobiological research and discuss methods for detecting porphyrin molecules in terrestrial sedimentary environments. We present preliminary data to support the use of ToFSIMS as a powerful technique in the identification of porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号