共查询到20条相似文献,搜索用时 15 毫秒
1.
T Hoson S Kamisaka B Buchen A Sievers M Yamashita Y Masuda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(6-7):47-53
A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity. 相似文献
2.
Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions. 总被引:1,自引:0,他引:1
T Hoson M Saiki S Kamisaka M Yamashita 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):933-940
Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions. 相似文献
3.
T Shimazu T Yuda K Miyamoto M Yamashita J Ueda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):995-1000
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells. 相似文献
4.
A capillary-driven root module for plant growth in microgravity. 总被引:2,自引:0,他引:2
S B Jones D Or 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(10):1407-1412
A new capillary-driven root module design for growing plants in microgravity was developed which requires minimal external control. Unlike existing systems, the water supply to the capillary-driven system is passive and relies on root uptake and media properties to develop driving gradients which operate a suction-induced flow control valve. A collapsible reservoir supplies water to the porous membrane which functions to maintain hydraulic continuity. Sheet and tubular membranes consisting of nylon, polyester and sintered porous stainless steel were tested. While finer pore sized membranes allow greater range of operation, they also reduce liquid flux thereby constraining system efficiency. Membrane selection should consider both the maximum anticipated liquid uptake rate and maximum operating matric head (suction) of the system. Matching growth media water retention characteristics to the porous membrane characteristics is essential for supplying adequate liquid flux and gas exchange. A minimum of 10% air-filled porosity (AFP) was necessary for adequate aeration. The capillary-driven module maintained hydraulic continuity and proper gas exchange rates for more than 80 days in a plant growth experiment. 相似文献
5.
R. Herrmann P. Rudolph H. Krüger G. Schneider R. Röstel R. Kuhl A.S. Okhotin V.T. Khryapov E.V. Markov I.P. Kazakov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(5):163-166
Two sublimation experiments with PbTe were performed at 850°C and 750°C under microgravity conditions during the “Salyut-6”-“Soyuz-31” mission in 1978. The sublimation took place on the (100)-face of a PbTe crystal. The condensate grown at 850°C shows in the upper part the formation of a pyramidal habit. The bulk consists of parallel growth colums with [100]-boundary faces. The charge carrier concentration of the electrons (N=1,5·1019 cm?3) is higher than the homogeniety limit for 800°C should permit. This is in contrast to the result obtained on the PbTe crystal of the parallel experiment on the earth. At 750°C a laminated condensate is grown with a low growth rate. The microphotograph of the substrate shows the beginning whisker formation according to the VLS-mechanism. 相似文献
6.
G S Nechitailo A L Mashinsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1959-1965
The results of experiments aboard spacecraft demonstrated the dependence of the pattern of biological processes on microgravity and on the ability of biological objects to adapt themselves to new environmental conditions. This is of fundamental importance for solving theoretical and practical problems of space biology, or elaborating the theory of organism's behavior in weightlessness, and for elucidating the global mechanisms of the action of microgravity on living systems. 相似文献
7.
S I Zhadko T V Polulyakh YuAVorobyeva V A Baraboy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):103-106
In series of space experiments aboard the biosatellites "Cosmos 1887", "Bion 9", the orbital stations "Salut", "Mir" and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character; three steps of response were established: LPO decreasing accompanied by AOA increase; stabilization LPO <==> AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization. 相似文献
8.
J J van Loon J P Veldhuijzen E J Windgassen T Brouwer K Wattel M van Vilsteren P Maas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):289-298
To study the effects of weightlessness on mouse fetal long bone rudiment growth and mineralization we have developed a tissue culture system for the Biorack facility of Spacelab. The technique uses standard liquid tissue culture medium, supplemented with NA-beta-glycerophosphate, confined in gas permeable polyethylene bags mounted inside ESA Biorack Type I experiment containers. The containers can be flushed with an air/5% CO2 gas mixture necessary for the physiological bicarbonate buffer used. Small amounts of fluid can be introduced at the beginning (e.g. radioactive labels for incorporation studies) or at the end of the experiment (fixatives). A certain form of mechanical stimulation (continuous compression) can be used to counteract the, possibly, adverse effect of microgravity. Using 16 day old metatarsals the in vitro calcification process under microgravity conditions can be studied for a 4 day period. 相似文献
9.
M E Cook J L Croxdale T W Tibbitts G Goins C S Brown R M Wheeler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1103-1110
A potato explant consisting of a leaf, its axillary bud, and a small segment of stem will develop a tuber in 10-14 days when grown on earth. The tubers develop from the axillary buds and accumulate starch derived from sugars produced through photosynthesis and/or mobilized from leaf tissue. Potato explants were harvested and maintained in the Astroculture (TM) unit, a plant growth chamber designed for spaceflight. The unit provides an environment with controlled temperature, humidity, CO2 level, light intensity, and a nutrient delivery system. The hardware was loaded onto the space shuttle Columbia 24 hours prior to the launch of the STS-73 mission. Explant leaf tissue appeared turgid and green for the first 11 days of flight, but then became chlorotic and eventually necrotic by the end of the mission. The same events occurred to ground control explants with approximately the same timing. At the end of the 16-day mission, tubers were present on each explant. The size and shape of the space-grown tubers were similar to the ground-control tubers. The arrangement of cells in the tuber interior and at the exterior in the periderm was similar in both environments. Starch and protein were present in the tubers grown in space and on the ground. The range in starch grain size was similar in tubers from both environments, but the distribution of grains into size classes differed somewhat, with the space-grown tubers having more small grains than the ground control tubers. Proteinaceous crystals were found in tubers formed in each condition. 相似文献
10.
M Singh H J Rath 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(7):239-242
Aggregation mechanism of erythrocytes under normal and microgravity conditions is analyzed from their recorded images. The video data is analyzed by PC/AT based image processing system. The results show that the shape of individual erythrocytes and their formed aggregates changes significantly which may affect the formation process of aggregates under microgravity conditions. 相似文献
11.
G S Nechitailo A L Mashinsky A A Kuznetsov V M Chikov O A Kuznetsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):639-643
Experiments on the spatial behavior of the flax (Linum usitatissimum, L.) seedlings in a nonuniform magnetic field were conducted on the orbital space stations "Salut" and "Mir". This field can displace sensory organelles (statoliths) inside receptor cells and such displacement should cause a physiological reaction of the plant-tropistic curvature. Experiments were conducted in the custom-built "Magnetogravistat" facility, where seeds were germinated and grown for 3-4 days in a magnetic field with the dynamic factor grad (H2/2) approximately equal to 10(7) Oe2/cm, then fixed on orbit and returned to Earth for analysis. It was found, that 93% of the seedlings were oriented in the field consistently with curvature in response to displacement of statoliths along the field gradient by ponderomotive magnetic forces, while control seedlings grew in the direction of the initial orientation of the seed. This suggests, that gravity receptors of plants recognized magnetic forces on statoliths as gravity, and that gravity stimulus can be substituted for plants by a force of a different physical nature. 相似文献
12.
J D Rummel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):351-353
When humans move out into the solar system to stay for long durations, the most immediate challenge will be the provision of a life-supporting environment in locations that are naturally devoid of food, air, and water. Life support systems must provide these commodities in all phases of space flight--during intravehicular activity (IVA) and during extra-vehicle activity (EVA). Systems that support human life must provide: overall reliability in the space environment, allowing maintenance and component replacement in space; reduced resupply mass of consumables and spares; for planetary surfaces, the ability to utilize local resources for increased self sufficiency; and the minimized mass power and volume requirements necessary for all space flight systems. This paper will discuss the melding of these technical requirements in such a way as to meet the human needs of space flight. 相似文献
13.
S B Jones D Or 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(10):1413-1418
An important and yet relatively under researched area of plant growth in microgravity, deals with the rooting environment of plants. A comprehensive approach for selecting the physical characteristics of root growth media which optimizes the dynamic availability of water and dissolved nutrients, and gases to plant roots was developed and tested. Physically-based and parametric models describing the relationship between content and fluxes of liquids and gases were used to cast a multi-objective optimization problem. This methodology reveals that a medium's ability to supply liquid and gas fluxes optimally is dependent upon physiological target values, system operation limits and root module design which dictate the medium's range of soil water characteristic and particle size distribution. Optimized media parameters designate a particle size distribution from which a particulated growth media was constructed and matched to the optimized media parameters. This methodology should improve the selection of optimal media properties for plant growth in microgravity as well as other porous media applications. 相似文献
14.
E.V. Nesterenko V.A. Kozlov S.V. Khizhnyak N.S. Manukovsky V.S. Kovalev Yu.L. Gurevich Hong Liu Yidong Xing Enzhu Hu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The object of this research is to study a soil-like substrate (SLS) to grow plants in a Bioregenerative Life Support System (BLSS). Wheat and rice straw were used as raw materials to prepare SLS. Anti-fungal activity of SLS using test cultures of Bipolaris sorokiniana, a plant-pathogenic fungus which causes wheat root rot was studied. Experiments were conducted with SLS samples, using natural soil and sand as controls. Infecting the substrates, was performed at two levels: the first level was done with wheat seeds carrying B. sorokiniana and the second level with seeds and additional conidia of B. sorokiniana from an outside source. We measured wheat disease incidence and severity in two crop plantings. Lowest disease incidence values were obtained from the second planting, SLS: 26% and 41% at the first and the second infection levels, respectively. For soil the values were 60% and 82%, respectively, and for sand they were 67% and 74%, respectively. Wheat root rot in the second crop planting on SLS, at both infection levels was considerably less severe (9% and 13%, respectively) than on natural soil (20% and 33%) and sand (22% and 32%). SLS significantly suppressed the germination of B. sorokiniana conidia. Conidia germination was 5% in aqueous SLS suspension, and 18% in clean water. No significant differences were found regarding the impact on conidia germination between the SLS samples obtained from wheat and rice straw. The anti-fungal activity in SLS increased because of the presence of worms. SLS also contained bacteria stimulating and inhibiting B. sorokiniana growth. 相似文献
15.
O P Berezovska N V Rodionova E N Grigoryan V I Mitashov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1059-1063
Intensity of osteoclastic resorption and calcium content were investigated in intact limb bones of the newts flown on board of a biosatellite Cosmos-2229 after amputation of their forelimbs and tail. Using X-ray microanalysis it was shown an increase in calcium content in the bones on 20th day after operation. Histological study revealed an activation of osteoclastic resorption on endosteal surface of long bones. The newts exposed after surgery on a biosatellite had the same level of bone mineralisation as operated ground control ones, but the increase in number of polynuclear osteoclasts was lower. 相似文献
16.
J.C. Legros G. Pétré M.C. Limbourg-Fontaine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(5):37-41
At equilibrium, aqueous fatty alcohol solutions presents a surface tension minimum versus temperature. The influence of such an extremum on the Marangoni convection is studied. Two experiments have been performed under microgravity conditions (Texus 8 (1983) and Texus 9 (1984) flights). The velocity fields are determined by following the paths of tracer particles and furthermore, in the Texus 9 experiment, differential interferograms have been recorded. 相似文献
17.
S I Bartsev V V Mezhevikin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(9):1643-1647
Spontaneous assembling of a simplest bacterial cell even if all necessary molecules are present in a solution seems to be extremely rare event and from the scientific standpoint has to be considered as impossible. Therefore, a predecessor of a living cell has to be very simple for providing its self-assembling and at the same time it should be able of progressive increase in complexity. Now phase-separated particles, first of all micelles, are put forward as possible predecessors of living cell. According to the offered working concept only phase-separated particles possessing autocatalytic properties can be considered as predecessors of living cells. The first stage of evolution of these phase-separated autocatalytic systems is the appearance of pre-biotic metabolism providing synthesis of amphiphiles for formation of capsules of these systems. This synthesis is maintained by the energy of a base reaction being a component of a planet-chemical cycle. Catalytic system providing functioning of pre-biotic metabolism is based on multivariate oligomeric autocatalyst, which reproduces itself from monomers, penetrating the particles from the outside. Since the autocatalyst realizes random polymerization then a collection of other oligomers possessing different catalytic functions is produced. In the paper the functioning of multivariate oligomeric autocatalyst in flow reactor is analyzed. 相似文献
18.
A J Merkys R S Laurinavicius D V Svegzdiene D P Rakleviciene A V Jarosius O J Rupainiene 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):23-32
The manifestation of gravitropic reaction in plants has been considered from the phylogenetic point of view. A chart has been suggested according to which it is supposed that the first indications of the ability to identify the direction of the gravitational vector were inherent in the most ancient eukaryotes, which gave rise to green, brown, yellow-green, golden and diatomaceous algae as well as fungi. The experiments on the role of gravity in plant ontogenesis are being continued. The sum total of the data obtained in a number of experiments in space shows that under these conditions a structurally modified but normally functioning gravireceptive apparatus is formed. The data confirming the modification, under changed gravity, of the processes of integral and cellullar growth of the axial organs of seedlings as well as of the anatomo-morphological structure and developmental rates of plants during their prolonged growth in space are presented. It is assumed that this fact testifies to the presence of systems interacting with gravity during plant ontogenesis. At the same time the necessity for further experiments in order to differentiate an immediate biological effect of gravity from the ones conditioned by it indirectly due to the changes in the behavior of liquids and gases is pointed out. The methodological aspects of biological experiments in space as the main source of reliable information on the biological role of gravity are discussed. 相似文献
19.
K A Corey M E Bates S L Adams 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):301-308
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS. 相似文献
20.
K A Corey M E Bates S L Adams 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):265-272
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS. 相似文献