首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We present numerical results showing the effect of neutral hydrogen atoms on the solar wind (SW) interaction with the local interstellar medium (LISM), where the interstellar magnetic field (ISMF) is coupled to the interplanetary magnetic field (IMF) at the surface of the heliopause. The IMF on the inner boundary surrounding the Sun is specified in the form of a Parker spiral and self-consistently develops in accordance with the SW motion inside the heliopause. The model of the SW–LISM interaction involves both plasma and neutral components which are treated as fluids. The configuration is chosen where the ISMF is orthogonal to the LISM velocity and tilted 60° to the ecliptic plane. This orientation of the magnetic field is a possible explanation of the 2–3 kHz emission data which is believed to originate ahead of the heliopause. It is shown that the topology of the heliospheric current sheet is substantially affected by the ISMF. The interaction pattern dependence on the neutral hydrogen density is analyzed.  相似文献   

2.
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed.  相似文献   

3.
The ROSAT all-sky survey discovered several ‘shrapnels’, showing boomerang structures outside the Vela SNR. We observed the shrapnel D in the eastern limb of the Vela SNR with the XMM-Newton satellite. There is an X-ray bright ridge structure in our FOV running from north to south. There is also an optical bright ridge structure running parallel to that in X-ray about 3′ in the east. These suggest that the shrapnel D is now interacting with an interstellar cloud. Applying the VNEI model to X-ray spectra of various regions, we find that the plasma state of the eastern region of the X-ray ridge is significantly different from that of the western region. The X-ray spectra in the western region can be well fitted with a single temperature component. Abundances of heavy elements are almost uniform, whereas they are heavily overabundant (except Fe): the relative abundances to the solar values are O ∼5, Ne ∼8, Mg ∼8, Fe ∼1. It must have originated from the ejecta of the SN. We find that the plasma in the eastern part of the ridge consists of two temperature components: one component (hot plasma) representing the ejecta while the other (cold plasma) represents the interstellar cloud or swept-up ISM. These two components must have contacted to each other, indicating to form a contact discontinuity. Around northern part of the contact discontinuity, we found wavelike structures of which the typical scales are comparable with that of the Rayleigh–Taylor instability.  相似文献   

4.
The long outstanding question of where the heliospheric (solar) modulation of galactic cosmic rays actually begins, in terms of spatial position, as well as at what high kinetic energy, can now be answered. Both answers are possible by using the results of an advanced numerical model, together with appropriate observations. Voyager 1 has been exploring the outskirts of the heliosphere and is presently entering what can be called the very local interstellar medium. It has been generally expected, and accepted, that once the heliopause is crossed, the local interstellar spectrum (LIS) should be measured in situ by the Voyager spacecraft. However, we show that this may not be the case and that modulation effects on galactic cosmic rays can persist well beyond the heliopause. For example, proton observations at 100 MeV close to the heliopause can be lower by ∼25% to 40% than the LIS, depending on solar modulation conditions. It is also illustrated quantitatively that significant solar modulation diminishes above ∼50 GeV at Earth. It is found that cosmic ray observations above this energy contain less that 5%5% solar modulation effects and should therefore reflect the LIS for galactic cosmic rays. Input spectra, in other words the very LIS, for solar modulation models are now constrained by in situ observations and can therefore not any longer be treated arbitrarily. It is also possible for the first time to determine the lower limit of the very LIS from a few MeV/nuc to very high energies.  相似文献   

5.
Charge-exchange processes between interstellar H-/O-atoms and protons of the bulk of the interstellar plasma flow downstream of the outer bowshock in the heliospheric interface induce secondary ions leading to non-relaxated velocity distribution functions. The relaxation of these freshly induced ions towards an equilibrium distribution occurs due to Coulomb interactions and wave–particle interactions with the background turbulence. Since Coulomb interactions are of low relevance, we study here in detail the effect of wave–particle interactions. To find the turbulence levels in the interface we consider the MHD-wave transformation at the outer shock surface between the interface and the local interstellar plasma. The turbulence in the outer interface region is shown to be dominated by incompressible Alfvén waves both for cases of quasiparallel and quasiperpendicular shocks. Also we show that waves propagating towards the shock are more intensive than those propagating away from it. The level of Alfvén turbulence in the interface is estimated using the recent data on local interstellar turbulence deduced from observations of interstellar scintillations of distant radiosources. Two proton relaxation processes are considered: quasilinear resonant interactions with Alfvén waves and non-linear self-induced wave–particle scattering. The corresponding diffusion coefficients are estimated, and typical time periods for protons and oxygen ions relaxation are shown to be of the same order of magnitude as H-/O-atoms passage time over the extent of the interface. This indicates that perturbed ion distribution functions must be expected there.  相似文献   

6.
The interstellar heliopause probe (IHP) is one of ESA’s technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme.

Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality.

To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s2, which corresponds to a 245 × 245 m2 solar sail and a sail thickness of 1–2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe.

In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.  相似文献   


7.
The modulation of cosmic ray electrons in the heliosphere plays an important role in improving our understanding and assessment of the processes applicable to low-energy galactic electrons. A full three-dimensional numerical model based on Parker’s transport equation is used to study the modulation of 10 MeV galactic electrons, in particular inside the heliosheath. The emphasis is placed on the role that perpendicular diffusion plays in causing the extraordinary large increase in the observed intensities of these electrons in the heliosheath. The modelling is compared with observations of 6–14 MeV electrons from the Voyager 1 mission. Results are shown for the radial intensity profiles of these electrons, as well as the modulation effects of varying the extent of the heliosheath by changing the location of the termination shock and the heliopause and the value of the local interstellar spectrum. We confirm that the heliosheath acts as a modulation ‘barrier’ for low-energy galactic electrons. The significance of this result depends on how wide the inner heliosheath is; on how high the very local interstellar spectrum is at these low energies (E < 100 MeV) and on how small perpendicular diffusion is inside the inner heliosheath.  相似文献   

8.
9.
本文应用三层模式和ISEE卫星观测资料,讨论了磁层顶旋转间断的稳定性。结果表明:(1)在磁层顶旋转间断中可以激发一种不稳定性。随着波数k增大,不稳定性增长率也将增加。(2)当行星际磁场为北向时,磁层顶旋转间断是稳定的;当行星际磁场逐渐变为南向时,不稳定性增长率将迅速增加。(3)当太阳风速度较大时,不稳定性增长率相应地也较大。(4)当行星际磁场为南向时,随着行星际磁场与磁层顶切平面交角的增大,不稳定性的增长率也迅速增加。  相似文献   

10.
Observations show that the magnetic field in young supernova remnants (SNRs) is significantly stronger than can be expected from the compression of the circumstellar medium (CSM) by a factor of four expected for strong blast waves. Additionally, the polarization is mainly radial, which is also contrary to expectation from compression of the CSM magnetic field. Cosmic rays (CRs) may help to explain these two observed features. They can increase the compression ratio to factors well over those of regular strong shocks by adding a relativistic plasma component to the pressure, and by draining the shock of energy when CRs escape from the region. The higher compression ratio will also allow for the contact discontinuity, which is subject to the Rayleigh–Taylor (R–T) instability, to reach much further out to the forward shock. This could create a preferred radial polarization of the magnetic field. With an Adaptive Mesh Refinement MHD code (AMRVAC), we simulate the evolution of SNRs with three different configurations of the initial CSM magnetic field, and look at two different equations of state in order to look at the possible influence of a CR plasma component. The spectrum of CRs can be simulated using test particles, of which we also show some preliminary results that agree well with available analytical solutions.  相似文献   

11.
In this paper we start from the most recently observed fact that the solar wind plasma after passage over the termination shock is still supersonic with a Mach number of about 2. To explain this unexpected phenomenon and to predict the evolution of properties of the downstream plasma flow we here consider a two-fluid proton plasma with pick-up protons as a separate suprathermal, second proton fluid. We then formulate a self-consistent system of hydrodynamical conservation equations coupling the two fluids by dynamical and thermodynamical coupling terms and taking into account the effects of newly incorporated protons due to charge exchange with the H-atoms in the heliosheath. This then allows us to predict that in the most probable case the solar wind protons will become subsonic over a distance of about 30 AU downstream of the shock. As we can also show, it may, however, happen that the plasma mixture later again reconverts to a supersonic signature and has to undergo a second shock before meeting the heliopause.  相似文献   

12.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E < ∼1.0 GeV the effects of the assumed asymmetry on the modulated spectra are insignificant up to 60 AU from the Sun but become increasingly more significant with larger radial distances to reach a maximum inside the heliosheath. In contrast, with E > ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectrum.  相似文献   

13.
The effects of changing the position of the solar wind termination shock and the position of the heliopause, and therefore the extent of the heliosheath, on the modulation of cosmic ray protons are illustrated. An improved numerical model with diffusive termination shock acceleration, a heliosheath and drifts is used. The modulation is computed in the equatorial plane and at 35 heliolatitude using recently derived diffusion coefficients applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. It was found that qualitatively the modulation results for the different heliopause positions are similar although they differ quantitatively, e.g., clearly different radial gradients are predicted for the regions beyond the termination shock compared to inside the shock. The difference between the modulation for the two solar polarity cycles are less significant at a heliolatitude of 35° than in the equatorial plane. We found that moving the termination shock from 90 to 100 AU, with the heliopause fixed at 120 AU, caused only quantitative differences so that the exact position of the TS in the outer heliosphere seems not crucially important to global modulation. Moving the heliopause outwards, to represent the modulation in the tail region of the heliosphere, causes overall decreases in the cosmic ray intensities but not linearly as a function of energy, e.g., at 1 GeV the effect is insignificant. We conclude from this modelling that the modulation of protons in the heliospheric nose and tail regions are qualitatively similar although, clear quantitative and interesting differences occur.  相似文献   

14.
从快速、有效地进行空间天气数值预报的需要出发,针对1998年5月份行星际太阳风暴事件,采用全三维流体力学(HD)模型进行数值试验,考察了无振荡、无自由参数(NND)格式在三维太阳风流动数值模拟中的应用.计算中内边界的密度分布由观测K日冕数据来确定,由此得到的源表面密度分布具有和源表面电流片相似的结构.数值试验表明: 虽然该格式不需要加入人工粘性,但是具有很好的计算稳定性.在扰动计算时激波间断耗散小,在三维任何方向上间断所占的网格数比较少,没有数值色散现象.   相似文献   

15.
The origin of the local interstellar matter, especially the hot component, is studied. The bulk of the local interstellar space is occupied with hot low-density matter, which is similar to the gas heated by the shock front of the supernova remnant. We investigate the model that our Sun is located in a superbubble. The superbubbles are observed in Orion-Eridanus region and Gum nebula. The similar objects are found in λ 21 cm H I maps as H I shells and holes. The superbubbles certainly correlate with OB associations and giant molecular clouds. The evolution of superbubbles formed by sequential supernova explosions in an OB association is studied by hydrodynamical simulations. We compare the results with observations. A model of cycling of interstellar matter is presented, in relation to the evolution of the superbubble.  相似文献   

16.
The collapse of a protogalaxy composed of dark matter and primordial gas has been investigated by numerical simulations and analytical multi-zone modelling in an attempt to examine the early evolution of disk galaxies. The importance of ample interstellar matter existing in young galactic disks has been highlighted. Confrontation of the theoretical results with the available observational data has led to a new picture for disk galaxy evolution, in which the bulge is the secondary object formed from disk matter. Occurrence of quasar activity is also discussed in relation to the dynamical evolution of the host galaxy.  相似文献   

17.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   

18.
    
针对沿多孔壁面流动的牛顿流体液膜进行线性稳定性分析,特别考虑中等雷诺数的情形。认为多孔壁面处的流动满足Beavers-Joseph滑移边界条件,采用动量积分方法,得到色散关系和中性稳定曲线。多孔壁面的渗透性促进了液膜流动的不稳定,加快了液膜表面波的移动。随着雷诺数增大,中等雷诺数范围的最大增长率呈现先增大后减小趋势。最大增长率极值和不稳定波数区域与壁面渗透性有关。通过能量分析探究多孔介质渗透性对流动稳定性的作用机理,多孔壁面滑移速度的存在使得平均流速增大,速度梯度减小,导致黏性耗散减小从而促进流动失稳。  相似文献   

19.
20.
We study time evolution of an energy spectrum of a proton flux in the range of 47 – 4750 keV for the energeticparticle event occurred on 255 DOY in 1999, which we consider as one of typical diffusive acceleration events associated with interplanetary shocks and irrespective of large X-ray solar flares. Fast enhancement during evolution is found in the range of less than about 0.5 MeV. Our previous numerical simulations using Stochastic Differential Equation method could not show this behavior, although we obtained results showing a power law energy spectrum, which suggesting that energetic particles are accelerated diffusively by shock waves, the first-order Fermi acceleration. We consider that less than 0.5 MeV protons need to exist to explain behavior of the observational energy spectrum and perform numerical simulations in order to investigate proper injection models for this event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号