首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present the results of 2.5-dimensional MHD simulations for jet formation from accretion disks in a situation such that the magneto-rotational instability is occurring in the disk. When there is no initial perturbation in the disk, the surface layer falls faster than the equatorial part to make a surface avalanche and associated jets. However, if we input an initially large perturbation (> 10% of sound speed) in the disk, the dense region of the disk falls on an orbital time scale to make a more violent accretion and jet. In this case, the accretion rate and mass loss rates are an order of magnitude larger than those in the case without initial perturbation. The speed of the jet is of order the Keplerian velocity of the disk regardless of the instability.  相似文献   

2.
How are accretion disks in Seyfert Galaxies oriented relative to the disk of the spiral galaxy which hosts them? This angle, β, serves as a link between the innermost workings of the black hole plus fueling accretion disk and the larger galaxy, either as the memory of the activity-provoking event, or as a diagnostic for the structure of the accretion disk.A sample culled from the literature shows that there is no tendency for accretion disks to align with the host galaxy disk and, in addition, there appears to be a zone of avoidance, where the accretion disks of no or very few active spirals are aligned within 20 degrees of the normal to the host galaxy disk. These results seem counter intuitive given the strong influence of angular momentum of the galaxy disk on material in that disk.  相似文献   

3.
In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, focusing on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.  相似文献   

4.
An early high-temperature phase of the protosolar accretion disk is implied by at least three different telltales in chondrites and confirmed by peculiarities in the dust grains of comet Halley. The existence this high-temperature phase implies a large accretion rate hence a massive early disk. This clarifies the origin of the Kuiper Belt and of the Oort cloud, those two cometary populations of different symmetry that subsist today. Later, when the dust sedimented and was removed from the thermal equilibrium with the gas phase, a somewhat lower temperature of the disk explains the future planets' densities as well as the location beyond 2.6 AU of the carbonaceous chondrite chemistry. This lower temperature remains however large enough to require an exogenous origin for all carbon and all water now present in the Earth. The later orbital diffusion of planetesimals, which is required by protoplanelary growth, is needed to explain the origin of the terrestrial biosphere (atmosphere, oceans, carbonates and organic compounds) by a veneer mostly made of comets.  相似文献   

5.
Our current theoretical and observational understandings of the accretion disks around Galactic black-holes are reviewed. Historically, a simple phenomenological accretion disk model has been used to interpret X-ray observations. Although such a phenomenological interpretation is still useful, high quality X-ray data from contemporary instruments allow us to test more realistic accretion disk models. In a simple and ideal case, the standard optically thick accretion disk model is successful to explain observations, such that the inner disk radius is constant at three times the Schwarzschild radius over large luminosity variations. However, when disk luminosity is close to or exceeds the Eddington luminosity, the standard disk model breaks, and we have to consider the “slim disk” solution in which radial energy advection is dominant. Recent observations of Ultra-luminous X-ray sources (ULXs), which may not be explained by the standard disk model, strongly suggest the slim disk solution. We compare theoretical X-ray spectra from the slim disk with observed X-ray spectra of ULXs. We have found that the slim disk model is successful to explain ULX spectra, in terms of the massive stellar black-holes with several tens of solar mass and the super-Eddington mass accretion rates. In order to explain the large luminosities (>1040 ergs s−1) of ULXs, “intermediate black-holes” (>100M) are not required. Slim disks around massive stellar black-holes of up to several tens of solar mass would naturally explain the observed properties of ULXs.  相似文献   

6.
A fundamental component of the Active Galactic Nuclei (AGN) paradigm is an accretion disk. However, the nature of this accretion disk is not well understood. In this paper I present the spectropolarimetric observations of active galactic nuclei (AGN) in the Lyman limit (912Å) region and discuss their implications in the context of accretion disks in AGN.  相似文献   

7.
Thick accretion disks with narrow funnels around massive black holes are considered promising models for active galactic nuclei. These models assume a supercritical accretion rate and emit collimated beams with super-Eddington luminosities. We have made approximate calculations of the interaction between the emerging radiation and the walls for an optically thin funnel. The results are sensitive to the sound velocity and to the viscosity parameter α. They suggest that a significant particle luminosity can accompany the radiation in the super-Eddington case. By applying an Eddington type limit based on mechanical equilibrium to a suitably chosen interior surface in the disk, we find that energy transport, if radiative, can strongly limit the efficiency of these models.  相似文献   

8.
HAKUCHO observation of Cyg X-2 over 40 days did not show a correlation between the hardness ratio and the intensity predicted for dwarf X-ray sources. The energy spectrum in the range 0.3 – 20 keV was found to deviate from the thermal bremsstrahlung spectrum below 2 keV. The X-ray spectrum can be accounted for in terms of the comptonization of blackbody radiation emitted from teh neutron star surface and the accretion disk.  相似文献   

9.
We used a model of a relativistic accretion disk around a supermassive black hole (SMBH), based on ray-tracing method in the Kerr metric, to study the variations of the composite Fe Kα line emitted from two accretion disks around SMBHs in a binary system. We assumed that the orbit of such a binary is approximately Keplerian, and simulated the composite line shapes for different orbital elements, accretion disk parameters and mass ratios of the components. The obtained results show that, if observed in the spectra of some SMBH binaries during their different orbital phases, such composite Fe Kα line profiles could be used to constrain the orbits and several properties of such SMBH binaries.  相似文献   

10.
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account.  相似文献   

11.
The theory of polarization effects in radiation from compact X-ray sources is presented. The following four problems are considered: 1) the polarization of X-rays from the magnetized neutron stars; 2) the polarization of X-rays from the accretion disk around a black hole; 3) the optical polarization from X-ray binaries, and 4) the results of X-ray polarimetric observations.  相似文献   

12.
We study the possible origin of hydrodynamic turbulence in cold accretion disks such as those in star-forming systems and quiescent cataclysmic variables. As these systems are expected to have neutral gas, the turbulent viscosity is likely to be hydrodynamic in origin, not magnetohydrodynamic. Therefore, MRI will be sluggish or even absent in such disks. Although there are no exponentially growing eigenmodes in a hydrodynamic disk because of the non-normal nature of the eigenmodes, a large transient growth in the energy is still possible, which may enable the system to switch to a turbulent state. For a Keplerian disk, we estimate that the energy will grow by a factor of 1000 for a Reynolds number close to a million.  相似文献   

13.
We performed 2D and full 3D magnetohydrodynamic simulations of disk accretion to a rotating star with an aligned or misaligned dipole magnetic field. We investigated the rotational equilibrium state and derived from simulations the ratio between two main frequencies: the spin frequency of the star and the orbital frequency at the inner radius of the disk. In 3D simulations we observed different features related to the non-axisymmetry of the magnetospheric flow. These features may be responsible for high-frequency quasi-periodic oscillations (QPOs). Variability at much lower frequencies may be connected with restructuring of the magnetic flux threading the inner regions of the disk. Such variability is specifically strong at the propeller stage of evolution.  相似文献   

14.
Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinary advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.  相似文献   

15.
We report the XMM-Newton detection of narrow Fe xxv and Fe xxvi X-ray absorption lines at 7 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) 4U 1323−62. Such features have now been reported in a growing number of LMXBs seen almost edge-on, indicating that the highly-ionized plasma probably originates in an accretion disk atmosphere or wind. During dipping intervals of 4U 1323−62, the strength of the Fe xxv feature increases while that of the Fe xxvi feature decreases, consistent with the presence of less strongly ionized material in the line-of-sight. As observed previously, the changes in the X-ray spectrum during dips are inconsistent with a simple increase in absorption by cool material. However, we show that the changes in both the narrow absorption features and the continuum can be modeled self-consistently by variations in the properties of an ionized absorber. From persistent to deep dipping the photo-ionization parameter decreases while the equivalent hydrogen column density of the ionized absorber increases. No partial covering of any component of the spectrum, and hence no extended corona, are required. Since highly-ionized absorption features are seen from many other dip sources, this mechanism may also explain the overall changes in X-ray spectrum observed during dipping intervals from these systems.  相似文献   

16.
17.
On the base of the comparative planetologic study of the Moon and terrestrial planets two fundamental features of their history and structure have been established.Firstly, shell-like structure of the terrestrial planets could be understood only in the terms of the heterogeneous accretion theory. At the final stages of major terrestrial planet formation the leading role belonged to the planetosimals of carbonaceous chondritic composition. Secondly, there are two types of the crust on the planetary surface. Their formation are considered to be independent and differing in the geological time. The primary planetary crust of predominantly feldspathic composition is considered to form during the pregeologic period at the final stage of planetary formation due to the impact-explosive processes. The hydrosphere and atmosphere is thought to appear contemporaneously. The basaltic planetary crust is forming later due to the radioactive decay and superimposed on the primary feldspathic crust.  相似文献   

18.
Recent observational advances in the study of high luminosity x-ray binaries have permitted investigation of the interaction of the outgoing x-radiation with the accreting matter surrounding the compact object. In two sources, 4U1822-37 and 4U2129+47, extended EINSTEIN coverage has led to the detection of partial x-ray eclipses, which indicate that the x-ray emitting regions must be extended in size. These have been interpreted as evidence for a large Compton-thick corona produced by evaporation of cool material off the surface of an accretion disk. In three other sources, 4U1915-05, 4U1624-49, and Cygnus X-2, evidence has been found for short x-ray absorption dips which are likely to be associated with obscuration by cool dense matter at the outer edge of the disk. In 4U1915-05, these dips are strictly periodic and determine the binary period for the system. In Cygnus X-2, the dips appear to be quasiperiodic, while in 4U1624-49, insufficient coverage has prevented clarification of the temporal properties of the absorption.For the brightest cosmic x-ray source, Scorpius X-1, the EINSTEIN objective grating spectrometer has provided high resolution spectra (λ/Δλ ~50) in the wavelength range 40-10 Å. The spectra reveal absorption features due to intervening helium, nitrogen, and oxygen. The implied nitrogen and oxygen abundances are anomalous and suggest that the absorbing material is intrinsic accreting matter which has been transferred from the surface of an evolved companion. Constraints on the inclination of the system then imply that this cool dense material must be well out of the orbital plane of the binary.  相似文献   

19.
The Galactic black hole candidate H 1743-322 exhibited two X-ray outbursts in rapid succession: one in August 2010 and the other in April 2011. We analyze archival data of this object from the PCA instrument on board RXTE (2–25 keV energy band) to study the evolution of its temporal and spectral characteristics during both the outbursts, and hence to understand the behavioral change of the accretion flow dynamics associated with the evolution of the various X-ray features. We study the evolution of QPO frequencies during the rising and the declining phases of both the outbursts. We successfully fit the variation of QPO frequency using the Propagating Oscillatory Shock (POS) model in each of the outbursts and obtain the accretion flow parameters such as the instantaneous shock locations, the shock velocity and the shock strength. Based on the degree of importance of the thermal (disk black body) and the non-thermal (power-law) components of the spectral fit and properties of the QPO (if present), the entire profiles of the 2010 and 2011 outbursts are subdivided into four different spectral states: hard, hard-intermediate, soft-intermediate and soft. We attempt to explain the nature of the outburst profile (i.e., hardness-intensity diagram) with two different types of mass accretion flow.  相似文献   

20.
We present a radiative/hydrodynamical mechanism for triggering AGN activity; the intensive radiation from a circumnuclear starburst drives the nuclear fueling due to the Poynting-Robertson (radiation drag) effects. When the starburst is in an early and therefore super-Eddington phase, the radiative flux force is likely to obstruct severely the mass accretion onto the nucleus (radiative blizzard phase). But, in a later sub-Eddington phase, the radiation flux force builds up a wall of dusty gas. The wall absorbs the radiation from the starburst regions and re-emits infrared radiation, which causes the disk accretion due to the Poynting-Robertson effect, consequently leading to nuclear fueling (radiative avalanche phase). The radiative avalanche could link to an advection-dominated accretion flow (ADAF) onto a putative supermassive black hole. The radiatively triggered nuclear activity diminishes as the starburst dims. In this context, the AGN type could be discriminated not only by the viewing angles but also by the evolution of a circumnuclear starbursts. Based on such a picture, we reconsider the AGN activity in luminous IRAS galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号