首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At Uranus, the Voyager 2 plasma wave investigation observed very significant phenomena related to radio emissions, dust impacts and magnetospheric wave-particle interactions. On January 19, 1986 (R= 270RU) the plasma wave investigation detected an intense radio burst at 31 and 56 kHz, and this provided the first indication that Uranus had a magnetosphere. During the encounter we observed more of these sporadic bursts, along with relatively continuous radio emissions extending down to 10 kHz, and a sporadic narrowband radio signal with f near 5 kHz. As Voyager passed through the ring plane, the plasma wave investigation recorded a large number of dust impacts. The dust ring was relatively diffuse (thickness of several thousand kilometers) and the peak impact rate was near 50 hits/second. The Voyager 2 plasma wave instrument also detected many strong electromagnetic and electrostatic plasma waves, with intensity peaks in the region within 12 Uranus adii. These waves have characteristics that can interact strongly with the local plasma and with the trapped energetic particles, leading to precipitation into the atmosphere, charged particle acceleration, and charged particle diffusion. In addition we detected strong wave activity in the region of the bow shock and moderate levels in the magnetic tail.  相似文献   

2.
The Planetary Radio Astronomy instruments on Voyager 1 and 2 provided new, highly detailed measurements of several different kinds of strong, nonthermal radiation generated in the inner magnetospheres and upper ionospheres of Jupiter and Saturn. At Jupiter, an intense decameter-wavelength component (between a few tenths of a MHz and 39.5 MHz) is characterized by complex, highly organized structure in the frequency-time domain and by a strong dependence on the longitude of the observer and, in some cases, of Io. At frequencies below about 1 MHz there exists a (principally) kilometer-wavelength component of emission that is bursty, relatively broadbanded (typically covering 10 to 1000 kHz), and strongly modulated by planetary rotation. The properties of this component are consistent with a source confined to high latitudes on the dayside hemisphere of Jupiter. A second kilometric component is narrow-banded, relatively weak and exhibits a spectral peak near 100 kHz. The narrowband component also occurs periodically but at a repetition rate that is a few percent slower than that corresponding to the planetary rotation rate. This component is thought to originate at a frequency near the electron plasma frequency in the outer part of the Io plasma torus (8 to 10 RJ) and to reflect the small departures from perfect corotation experienced by plasma there.The Voyager instruments also detected intense, low frequency, radio emissions from the Saturn system. The Saturnian kilometric radiation is observed in a relatively narrow frequency band between 3 kHz and 1.2 MHz, is elliptically or circularly polarized, and is strongly modulated in intensity at Saturn's 10.66-hr rotation period. This emission is believed to be emitted in the right-hand extraordinary mode from regions near or in Saturn's dayside, polar, magnetospheric cusps. Variations in intensity at Saturn's rotation period may correspond to the rotation of a localized magnetic anomaly into the vicinity of the ionospheric footprint of the polar cusp. Variations in activity on time scales of a few days and longer seem to indicate that both the solar wind and the satellite Dione can also influence the generation of the radio emission.  相似文献   

3.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   

4.
Solar radio type IV bursts can sometimes show directivity, so that no burst is observed when the source region in located far from the solar disk center. This has recently been verified also from space observations, at decameter wavelengths, using a 3D-view to the Sun with STEREO and Wind satellites. It is unclear whether the directivity is caused by the emission mechanism, by reduced radio wave formation toward certain directions, or by absorption/blocking of radio waves along the line of sight. We present here observations of three type IV burst events that occurred on 23, 25, and 29 July 2004, and originated from the same active region. The source location of the first event was near the solar disk center and in the third event near the west limb. Our analysis shows that in the last two events the type IV bursts experienced partial cut-offs in their emission, that coincided with the appearance of shock-related type II bursts. The type II bursts were formed at the flanks and leading fronts of propagating coronal mass ejections (CMEs). These events support the suggestion of absorption toward directions where the type II shock regions are located.  相似文献   

5.
In this paper, we present a tutorial review which was presented at the first Advanced School on Space Environment (ASSE 2004). We first describe the basics of radioastronomy definitions, and discuss radiation processes relevant to solar radio emissions like plasma emission, free–free bremsstrählung and gyromagnetic emissions. We illustrate these fundamentals by describing recent solar radio observations and the constraints they bring on different solar physical parameters. We focus on solar radio emissions from the quiet sun, active regions and during explosive events known as solar flares, and how the latter can bring quantitative informations on the particles responsible for the emission. Finally, particular attention is paid to new radio diagnostics obtained at very high frequencies in the millimeter/submillimeter range, as well as to radio emissions relevant to Space Weather studies.  相似文献   

6.
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time.  相似文献   

7.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

8.
Type III-L bursts constitute a class of type III bursts that are intense, complex, and of long duration at hectometric wavelengths. They are often associated with major flares and fast coronal mass ejections. Several observations suggested that the electron beams that produce these complex hectometric emissions could be accelerated and injected in the low or in the middle corona. In this study, we revisit the origin of these bursts by tracing the progression of the events from the low corona to the interplanetary medium. We show that type III-L features are related to sudden changes in the radio emission observed at metric and decametric wavelengths, in particular the onset of new emitting sources at positions that can be at large distances from the flare site.  相似文献   

9.
The sounding rocket POLAR 5 carried a 10 keV electron accelerator and various diagnostic instruments in a mother-daughter configuration. Onboard wave receivers recorded several types of VLF wave phenomena directly associated with the operation of the accelerator, with delays from 5 to 50 ms after the injection of the electrons. These delayed after-effects range from broadband noise, f > 3 kHz, observed above 170 km, through narrow band emissions at 2 and 5.6 kHz which appeared when the rocket crossed a region with precipitation of energetic electrons, to emissions covering frequencies from 3–4 to well above 100 kHz observed within the E-region (150-95 km). The latter was also associated with apparent changes in electron density. The observed emission properties indicate that the region perturbed by the beam and the neutralizing return current to the daughter may be a favoured generation region.  相似文献   

10.
Radio observations of the eclipse on November 3, 1994, were carried out at Chapecó, Brazil by using a decimetric spectrograph having high spectral and time resolution. The light curve shows that: (1) Time variation of the radio flux before the totality was more compared to that after. (2) During the totality radio emission at 1.5 GHz was observed. Advantage of high spatial resolution ( 3.2 arc sec) possible during solar eclipse enabled us to determine the height of radio emission at 1.5 GHz. (3) Microwave bursts were observed associated with metric Type III-RS bursts. The source size of one of the microwave bursts was 7 arc sec and its physical parameters have been estimated. (4) The time difference between radio and optical contacts suggested for the first time asymmetrical limb brightening at 1.5 GHz.  相似文献   

11.
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed.  相似文献   

12.
CME在产生和发展过程中与日冕和行星际介质相互作用并发出不同波长的射电辐射.在研究了无CME时空间等离子体的各种辐射机制基础上,统计分析了1999年2月至1999年8月期间有较大的CME发生情况下,在CME影响下L1拉格朗日点附近等离子体参数发生变化后的射电辐射机制.分析结果表明,其射电辐射机制主要是轫致辐射、微量的回旋辐射和更加微弱的复合辐射.此外,分析讨论了1999年2月至1999年8月期间与CME共生的太阳微波爆发.分析结果表明,与CME共生的是微波逐渐型爆发、尖峰爆发,其辐射机制主要是轫致辐射、回旋共振辐射、等离子体辐射及电子回旋脉泽辐射.  相似文献   

13.
An overview is presented of magnetic-field-related effects in the solar wind (SW) interaction with the local interstellar medium (LISM) and the different theoretical approaches used in their investigation. We discuss the possibility that the interstellar magnetic field (ISMF) introduces north–south and east–west asymmetries of the heliosphere, which might explain observational data obtained by the Voyager 1 and Voyager 2 spacecraft. The SW–LISM interaction parameters that are responsible for the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath are outlined. The possibility of a strong ISMF, which increases the heliospheric asymmetry and the H–He flow deflection, is discussed. The effect of the combination of a slow-fast solar wind during solar minimum over the Sun’s 11-year activity cycle is illustrated. The consequences of a tilt between the Sun’s magnetic and rotational axes are analyzed. Band-like areas of an increased magnetic field distribution in the outer heliosheath are sought in order to discover regions of possible 2–3 kHz radio emission.  相似文献   

14.
Several recent papers have reviewed the upper atmospheres and ionospheres of Jupiter and Saturn in the post Voyager era (see, e.g., /1/ and references therein). Therefore, this paper will review only the most salient characteristics, as far as Jupiter and Saturn are concerned. The emphasis here, however, is placed on the Uranus upper atmosphere that was probed in January, 1986, by Voyager 2 spacecraft. In particular comparative aspects of atmospheric composition, thermal structure, photochemistry and the vertical mixing are discussed.  相似文献   

15.
Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes.The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn — a result found earlier using Voyager 1 data — and the minor importance of quantities incorporating the interplanetary magnetic field.  相似文献   

16.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   

17.
Since the installation of the Solar Submillimeter Telescope (SST) in 1999 in the Complejo Astronómico El Leoncito (CASLEO, Argentina), the almost unexplored solar emissions at frequencies >100 GHz started to reveal new insights about thermal and non-thermal processes in active regions. SST operates at the frequencies of 212 and 405 GHz providing the unique opportunity to distinguish and investigate emission mechanisms. We present a review of the most relevant findings obtained. An statistical study made with observations of a selected sample of active regions shows that their flux density spectra increase with frequency. Rapid brightenings (pulses) are always observed both at 212 and 405 GHz in association to solar flares lasting for some tens to hundreds of milliseconds. They are well correlated between the two frequencies and have flux spectra either flat or increasing with frequency. The flux of submillimeter wave pulses remain within the same order of magnitude for different bursts, ranging typically 100–300 s.f.u. at 212 GHz and 500–1000 s.f.u. at 405 GHz. The time evolution of the pulse occurrence rate usually reproduces the time profile of the X-rays/γ-rays emission, and the bulk emission at submillimeter waves, when the latter is observable. There are examples of good correlation between individual pulses at submillimeter waves and hard X-rays/γ-rays. Submillimeter pulses are not restricted to flare events, but appear to be a general phenomenon that occurs over active regions as well. The starting time of the rapid submillimeter wave pulses is coincident or precedes the projected launch time of the coronal mass ejections. SST observations of the November 4, 2003 large flare revealed a new and yet unknown spectral component with intensities increasing towards even higher frequencies, appearing along with, but separated from the well-known microwave component.  相似文献   

18.
本文介绍了太阳L260°活动概况,并计算了黑子群的位置漂移及对应的射电缓变源.北京天文台2.84GHz射电望远镜在该活动区观测到8次特大的射电爆发(流量超过1000s.f.u.),其中4次(1991年5月16日,6月9日,6月11日,8月25日)射电爆发时变曲线十分相似而且这些微波爆发都与Ⅱ型Ⅲ型Ⅳ型米波爆发有良好的对应.可能说明该活动区所对应的日冕在长时间内存在一种磁场位形结构,这种磁场位形结构容易产生日冕物质抛射.   相似文献   

19.
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release.  相似文献   

20.
The ionospheres of the major planets Jupiter, Saturn, and Uranus are reviewed in light of Pioneer and Voyager observations. Some refinements to pre-Voyager theoretical models are required to explain the results, most notably the addition of significant particle ionization from ‛electroglow” and auroral processes and the need for additional chemical loss of protons via charge exchange reactions with water. Water from the Saturn rings has been identified as a major modifier of the Saturn ionosphere and water influx from satellites and/or meteorites may also be important at Jupiter and Uranus as well, as evidenced by the observed ionospheric structure and the identification of cold stratospheric carbon monoxide at Jupiter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号