首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modelization of solar energetic particle (SEP) events aims at revealing the general scenario of SEP injection and interplanetary propagation and relies on in situ measurements of SEP distributions. In this paper, we study to what extent the LEFS60 and LEMS30 electron telescopes of the Electron Proton Alpha Monitor (EPAM) on board the Advanced Composition Explorer are able to scan pitch-angle distributions during near-relativistic electron events. We estimate the percentage of the pitch-angle cosine range scanned by both telescopes for a given magnetic field configuration. We obtain that the pitch-angle coverage is always higher for LEFS60 than for LEMS30. Therefore, LEFS60 provides more information of the directional distribution of the observed particles. The aim of the paper is to study the relevance of the coverage when fitting LEFS60 particle measurements in order to infer the solar injection and the interplanetary transport conditions. By studying synthetic electron events, we obtain that at least 70% of the pitch-angle cosine range needs to be scanned by the telescope. Otherwise, multiple scenarios can explain the data.  相似文献   

2.
Since the middle of 1957 till present time the group of researchers of P.N. Lebedev Physical Institute of the Russian Academy of Sciences has carried out the regular balloon borne measurements of charged particle fluxes in the atmosphere. The measurements are performed at polar (northern and southern) and middle latitudes and cover the interval of heights from the ground level up to 30–35 km. Standard detectors of particles (gas-discharged counters) have been used. More than 80,000 measurements of cosmic ray fluxes in the atmosphere have been performed to the present time. In the data analysis the geomagnetic field and the Earth’s atmosphere are used as cosmic ray spectrometers.  相似文献   

3.
It is a case study of a chain of three magnetic storms with a special attention to the particle dynamics based on CORONAS-F and SERVIS-1 low altitude satellite measurements. Solar proton penetration inside the polar cap and inner magnetosphere and dynamics at different phases of the magnetic storms was studied. We found, that solar protons were captured to the inner radiation belt at the recovery phase of the first and the second magnetic storms and additionally accelerated during the last one. No evidence of sudden commencement (SC) particle injection was found. Enhanced solar proton belt intensity with small pitch angles decreased slowly during satellite orbits for 30 days until the next magnetic storm. Then in 20–30 h we registered strong precipitation of these protons followed by the trapped proton flux dropout. Intensity decrease was more pronounced at lower altitudes and higher particle energies.  相似文献   

4.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

5.
The objective of this study is to investigate cloud attenuation at 30 GHz frequency using ground-based microwave radiometric observations at a tropical location, Kolkata. At higher frequencies and lower elevation angles, cloud attenuation is of major concern at a tropical location. The location experiences high value of liquid water path (LWP), which is responsible for cloud attenuation, during the Indian summer monsoon (ISM) and pre-monsoon season. Significant amount of cloud attenuation has been observed during monsoon season at 30 GHz. Two years observations of exceedance probability of cloud attenuation and worst month statistics are presented. The variation of cloud attenuation with frequencies for different elevation angles has also been investigated. The seasonal and diurnal patterns of cloud attenuation are examined. Cloud attenuation, inferred from radiometric measurements before rain commencement, has been compared to rain attenuation at Ku-band. Exceedance probabilities of cloud and rain attenuation have been compared.  相似文献   

6.
Using daily temperature data available from radio-sonde measurements over Barajas (Madrid), La Coruña and Palma de Mallorca stations, for the time span 1971–1982 and an altitude range 100-30 mb, a study is made comparing temperatures at differents levels with the 10.7 cm flux in order to check whether radiation variability must be included in lower stratospheric models. At the latitude studied, stratospheric temperatures are uninfluenced by sudden warming phenomena avoiding difficulties of masking found in previous studies.  相似文献   

7.
Routine observations of lower ionosphere electron densities are now available from the EISCAT radar facility. High resolution (3km in altitude) power profile measurements are obtained from the altitude interval 55 to 170km for approximately 400 hours per year, collected during a series of continuous periods of operation of 24 or more hours at a time. Variations of D and E-region electron densities are presented, as a function of solar-zenith angle during quiet conditions, and as a function of simulated 30MHz riometer absorption during disturbed conditions.  相似文献   

8.
Corrected thermal net radiation measurements from the four Pioneer Venus entry probes at latitudes of 60°N, 31°S, 27°S, and 4°N are presented. Three main conclusions can be drawn from comparisons of the corrected fluxes with radiative transfer calculations: (1) sounder probe net fluxes are consistent with the number density of large cloud particles (mode 3) measured on the same probe, but the IR measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5×10?5 near 60°, 2–5×10?4 near 30°, and >5×10?4 near the equator.  相似文献   

9.
This institute conducted a series of meteorological rocket experiments for the upper-atmospheric sounding in the winter of 1979. Within the overlap altitude range with balloon flights, a comparison of the results with the standard radiosonde data indicated that the rocket-borne system was reliable. The measurements from foru rocket flights for the region between 20 and 30 km showed a degree of compatibility to each other while those for above 30 km differed considerably from one another. At low latitude, the temperature profiles in the winter stratosphere in general showed a reasonably good agreement with the U.S. Standard Atmospheric Supplements, 1966 (USSAS 66). A temperature of 2–24°C lower than the USSAS 66, however, was recorded in the lower mesosphere. Above 30 km the maximum diurnal variation in temperature was 9°C or so. In the winter, the wind profile showed the westerlies and the maximum wind velocity of 92.1 Msec?1 was obtained from these experiments at the height of 60 km.  相似文献   

10.
Gravity measurements from a high-altitude balloon can verify global and upward-continued gravity models. A gravimeter suspended beneath a balloon is in a dynamic, and largely unpredictable, environment sensing accelerations due to gravity and balloon motions. Independent measurements of balloon motions using inertial navigation data combined with ground tracking data will allow for separation of balloon-induced accelerations from gravitational accelerations. Analysis of these data must estimate: 1) vertical gravimeter accelerations due to motion and gravity, 2) horizontal velocity to estimate the Eötvös effect, and 3) gravimeter position for comparison with gravity models. The first engineering test flight occurred on 11 October 1983, during the seasonal wind reversal and was very successful. Flight duration was approximately seven hours, with two hours of data collected at each of 30 km and 26 km altitudes. The results include gravity estimates, design criteria for future flights and feasibility analysis for vertical gravity profiles during ascent and descent.  相似文献   

11.
The stability of GPS time and frequency transfer is limited by the fact that GPS signals travel through the ionosphere. In high precision geodetic time transfer (i.e. based on precise modeling of code and carrier phase GPS data), the so-called ionosphere-free combination of the code and carrier phase measurements made on the two frequencies is used to remove the first-order ionospheric effect. In this paper, we investigate the impact of residual second- and third-order ionospheric effects on geodetic time transfer solutions i.e. remote atomic clock comparisons based on GPS measurements, using the ATOMIUM software developed at the Royal Observatory of Belgium (ROB). The impact of third-order ionospheric effects was shown to be negligible, while for second-order effects, the tests performed on different time links and at different epochs show a small impact of the order of some picoseconds, on a quiet day, and up to more than 10 picoseconds in case of high ionospheric activity. The geomagnetic storm of the 30th October 2003 is used to illustrate how space weather products are relevant to understand perturbations in geodetic time and frequency transfer.  相似文献   

12.
We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments.  相似文献   

13.
The Giotto, Vega-1 and Vega-2 spacecraft flew through the environment of comet Halley at a relatively close range with velocities of the order of 70–80 km/s. The fore sections of their surface were bombarded by neutral molecules and dust grains which caused the emission of secondary electrons and sputtered ions. This paper makes use of the secondary electron current measurements performed on Vega-1 to infer some characteristic features of the cometary atmosphere. The total gas production rate is estimated to be of the order of 1030 molecules/s and is found to vary with time; the presence of a major jet is also detected at closest approach.  相似文献   

14.
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009.  相似文献   

15.
The results of proton energy (tens keV – several MeV) spectrum measurements near geomagnetic equator (L < 1.15) at low altitudes (<1000 km) are presented. We used data of experiments onboard ACTIVE, SAMPEX, NOAA TIROS-N satellites and SPRUT-VI (MIR station) and cover a time range of about 30 years (including previous measurements). It was found that the kappa-distribution function fits the experimental spectrum with the best correlation coefficient. A comparison of energy spectra of near-equatorial protons and ring-current protons was made. Using the estimation of the life time of near-equatorial protons we explain the difference in spectral indices of radiation belt and near-equatorial proton formation. We conclude that the ring current is the main source of the near-equatorial protons.  相似文献   

16.
Quartz-UV occultation measurements by the satellite Interkosmos-16 have been used to calculate ozone densities at altitudes between 55 and 75 km for the period July 27 – October 28 of 1976. Although the densities agree quite well with the Krueger-Minzner-model below 65 km distinct seasonal-latitudinal variations have been found. During July and August latitudinal variations are more pronounced than in September and October with a slight maximum shifting from 5° S in July to 30 – 40° S in September. A comparison of different height levels shows a decreasing latitudinal variation for increasing altitude during July and August and rather modest variations for September and October.  相似文献   

17.
The intensity of continua and emission lines which form the solar UV spectrum below 2100 Å is variable. Continua and emission lines originating from different layers in the solar atmosphere show a different degree of variability. Coronal emission lines at short wavelengths are much more variable than continua at longer wavelengths which originate in lower layers of the solar atmosphere. Typical time-scales of solar UV variability are minutes (flare induced), days (birth of active regions), 27 days (solar rotation), 11 years (solar cycle) and perhaps centuries, caused by long-term changes of the solar activity. UV intensity variations have been determined by either absolute irradiance measurements or by contrast measurements of plages vs. the quiet sun. Plages are the main contributor to the solar UV variability. Typical values for the solar UV variability over a solar cycle are: <1% at wavelengths longer than 2100 Å, 8% at 2080 Å (continuum), 20% at 1900 Å (continuum), 70% at H Lyα, 200% in certain emission lines 1200 < λ < 1800 Å and more than a factor of 4 in coronal lines λ < 1000 Å. Plage models predict the variable component of the solar UV radiation within ±50%. Absolute fluxes are known within ±30%. Several efforts are underway to monitor the solar UV irradiance with a precision better than a few percent over a solar activity cycle.  相似文献   

18.
The measurement of auroral X-rays with balloon-borne instruments is an efficient means to study the behaviour of electrons with energies above about 30 keV in the magnetosphere during disturbed periods. Possibilities will be discussed to continue such measurements in the 1980's. It will be pointed out, what kind of investigations may be performed. Recently developed payloads will be described that can be used as a basis for further technical developments. Satellite projects scheduled for the 1980's will be presented that are suited for coordinated X-ray measurements.  相似文献   

19.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号