首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The observational characteristics of the small scale magnetic structures are summarized. The temperature structure and temporal variability of the emission from coronal bright points, that pervade the source region of the solar wind in coronal holes and the quiet sun, and from active regions are shown to be remarkably similar. Particular emphasis is given to observations, potentially feasible with SOHO, that could resolve some of the outstanding issues regarding the role of the small scale magnetic structures in the energy balance and properties of the solar wind.  相似文献   

2.
Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.  相似文献   

3.
Recent high temporal and spatial resolution satellite observations of the solar corona provide ample evidence of oscillations in coronal structures. The observed waves and oscillations can be used as a diagnostic tool of the poorly known coronal parameters, such as magnetic field, density, and temperature. The emerging field of coronal seismology relies on the interpretation of the various coronal oscillations in terms of theoretically known wave modes, and the comparison of observed and theoretical wave mode properties for the determination of the coronal parameters. However, due to complexity of coronal structures the various modes are coupled, and the application of linear theory of idealized structures to coronal loops and active regions limits the usefulness of such methods. Improved coronal seismology can be achieved by the development of full 3D MHD dynamical model of relevant coronal structures and the oscillation phenomena. In addition to improved accuracy compared to linear analysis, 3D MHD models allow the diagnostic method to include nonlinearity, compressibility, and dissipation. The current progress made with 3D MHD models of waves in the corona is reviewed, and the challenges facing further development of this method are discussed in the perspective of future improvement that will be driven by new high resolution and high cadence satellite data, such as received from Hinode and STEREO, and expected from SDO.  相似文献   

4.
Cool giant and supergiant stars generally present low velocity winds with high mass-loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfvén waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfvén waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine, self-consistently, the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressure gradient. As the main result, we show that the magnetic geometry presents a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.  相似文献   

5.
The spectral and polarization properties of thermal cyclotron radio emission from a hot coronal loop with a current along the axis are computed. The magnetic field is supposed to have a component along the loop axis as well as a poloidal part due to the current, both components being of comparable magnitude. In this specific configuration a helical magnetic field is present with a remarkable minimum of its absolute value along the loop axis and a maximum at its periphery. The presence of one or two maxima of magnetic field value along the line of sight results in increasing optical thickness of the gyroresonance layers at appropriate frequencies in the microwave band and, therefore, in enhanced radio emission at those harmonics which are optically thin (for example,s=4). These cannot be observed in models with the commonly employed magnetic field configuration (longitudinal along the loop axis).We show that the frequency spectrum of thermal cyclotron radiation from a hot coronal loop with a helical magnetic field differs from that of the standards-component source (with smooth frequency characteristics and polarization corresponding toe-mode) in that plenty of fine structures (line-like features and cut-offs) are present and theo-mode is prevalent in some frequency intervals. The enhanced radio emission at high harmonics and the complicated form of frequency spectrum in the model considered imply that some microwave sources, which are poorly explained in traditional models of solar active regions, may be associated with helical magnetic fields in hot coronal loops. Computations allow one to indicate spectral and polarizational peculiarities of local sources testifying to the presence of a helical magnetic field.  相似文献   

6.
We present a solar wind model which takes into account the possible origin of fast solar wind streams in coronal plumes. We treat coronal holes as being made up of essentially 2 plasma species, denser, warmer coronal plumes embedded in a surrounding less dense and cooler medium. Pressure balance at the coronal base implies a smaller magnetic field within coronal plumes than without. Considering the total coronal hole areal expansion as given, we calculate the relative expansion of plumes and the ambient medium subject to transverse pressure balance as the wind accelerates. The magnetic flux is assumed to be conserved independently both within plumes and the surrounding coronal hole. Magnetic field curvature terms are neglected so the model is essentially one dimensional along the coronal plumes, which are treated as thin flux-tubes. We compare the results from this model with white-light photographs of the solar corona and in-situ measurements of the spaghetti-like fine-structure of high-speed winds.  相似文献   

7.
The properties of different solar wind streams depend on the large scale structure of the coronal magnetic field. We present average values and distributions of bulk parameters (density, velocity, temperature, mass flux, momentum, and kinetic and thermal energy, ratio of thermal and magnetic pressure, as well as the helium abundance) as observed on board the Prognoz 7 satellite in different types of the solar wind streams. Maximum mass flux is recorded in the streams emanating from the coronal streamers while maximum thermal and kinetic energy fluxes are observed in the streams from the coronal holes. The momentum fluxes are equal in both types of streams. The maximum ratio of thermal and magnetic pressure is observed in heliospheric current sheet. The helium abundance in streams from coronal holes is higher than in streams from streamers, and its dependences on density and mass flux are different in different types of the streams. Also, the dynamics of -particle velocity and temperature relative to protons in streams from coronal holes and streamers is discussed.  相似文献   

8.
Empirical studies have shown that the solar wind speed at Earth is inversely correlated with the areal expansion rate of magnetic flux tubes near the Sun. Recent model calculations that include a self-consistent determination of the coronal temperature allow one to understand the physical basis of this relationship; they also suggest why the solar wind mass flux is relatively constant.  相似文献   

9.
Profiles of the visible Fe X (6374 Å) coronal emission line as a function of height above the limb were obtained out to 1.16 solar radii in a coronal hole using the NSO/Sacramento Peak Observatory Coronagraph, Universal Spectrograph and a CCD camera. These are the first coronal line profiles obtained as a function of height in a coronal hole from the ground. Analysis of the line widths suggests a large component of nonthermal broadening which increases with height ranging from 40 to 60 km/s, depending upon the assumed temperature or thermal component of the profile.  相似文献   

10.
X-ray emission from solar coronal loops changes on two different timescales: a) flare loops and transient active region brightenings show a rapid variability, b) quiet region loops are quasi-steady and change only slowly with time. This different time behavior has been analyzed on the basis of Yohkoh SXT observations and we report here on the results from our analysis, mainly focussing on quiet loop variability.  相似文献   

11.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably the cause of the observed extremely low values of the Ne/Mg abundance ratio. In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary of these dense structures must be considered. In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Ulysses observed a stable strong CIR from early 1992 through 1994 during its first journey into the southern hemisphere. After the rapid latitude scan in early 1995, Ulysses observed a weaker CIR from early 1996 to mid-1997 in the northern hemisphere as it traveled back to the ecliptic at the orbit of Jupiter. These two CIRs are the observational basis of the investigation into the latitudinal structure of CIRs. The first CIR was caused by an extension of the northern coronal hole into the southern hemisphere during declining solar activity, whereas the second CIR near solar minimum activity was caused by small warps in the streamer belt. The latitudinal structure is described through the presentation of three 26-day periods during the southern CIR. The first at ∼24°S shows the full plasma interaction region including fast and slow wind streams, the compressed shocked flows with embedded stream interface and heliospheric current sheet (HCS), and the forward and reverse shocks with associated accelerated ions and electrons. The second at 40°S exhibits only the reverse shock, accelerated particles, and the 26-day modulation of cosmic rays. The third at 60°S shows only the accelerated particles and modulated cosmic rays. The possible mechanisms for the access of the accelerated particles and the CIR-modulated cosmic rays to high latitudes above the plasma interaction region are presented. They include direct magnetic field connection across latitude due to stochastic field line weaving or to systematic weaving caused by solar differential rotation combined with non-radial expansion of the fast wind. Another possible mechanism is particle diffusion across the average magnetic field, which includes stochastic field line weaving. A constraint on connection to a distant portion of the CIR is energy loss in the solar wind, which is substantial for the relatively slow-moving accelerated ions. Finally, the weaker northern CIR is compared with the southern CIR. It is weak because the inclination of the streamer belt and HCS decreased as Ulysses traveled to lower latitudes so that the spacecraft remained at about the maximum latitudinal extent of the HCS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Varieties of Coronal Mass Ejections and Their Relation to Flares   总被引:1,自引:0,他引:1  
Most coronal mass ejections (CMEs) start as coronal storms which are caused by an opening of channels of closed field lines along the zero line of the longitudinal magnetic field. This can happen along any zero line on the Sun where the configuration is destabilized. If the opening includes a zero line inside an active region, one observes a chromospheric flare. If this does not happen, no flare is associated with the CME in the chromosphere, but the process, as well as the response in the corona (a Long Decay Event in X-rays) remains the same. The only difference between flare-associated and non-flare-associated CMEs is the strength of the magnetic field in the region of the field line opening. This can explain essentially all differences which have been observed between these two kinds of CMEs. However, there are obviously also other sources of CMEs, different from coronal storms: sprays (giving rise to narrow, pointed ejections), erupting interconnecting loops (often destabilized by flares), and growing coronal holes. This paper tries to summarize and interpret observations which support this general picture, and demonstrates that both CMEs and flares must be properly discussed in any study of solar-terrestrial relations.  相似文献   

14.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and active region compositions and the transition region composition is frequently different from the coronal composition along the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R .  相似文献   

15.
Coronal loops are heated by the release of stored magnetic energy and by the dissipation of MHD waves. Both of these processes rely on the presence of internal structure in the loop. Tangled or sheared fields dissipate wave energy more efficiently than smooth fields. Also, a highly structured field contains a large reservoir of free magnetic energy which can be released in small reconnection events (microflares and nanoflares). The typical amount of internal structure in a loop depends on the balance between input at the photosphere and dissipation. This paper describes measures of magnetic structure, how these measures relate to the magnetic energy, and how photospheric motions affect the structure of a loop.The magnetic energy released during a reconnection event. can be estimated if one knows the equilibrium energy before and after the event. For a loop with highly tangled field lines, a direct solution of the equilibrium equations may be difficult. However, lower bounds can be placed on the energy of the equilibrium field, given a measure of the tangling known as the crossing number. These bounds lead to an estimate of the buildup of energy in a coronal loop caused by random photospheric motions. Parker's topological dissipation model can plausibly supply the 107 erg cm–2 s–1 needed to heat the active region corona. The heating rate can be greatly enhanced by fragmentation of flux tubes, for example by the breakup of photospheric footpoints and the formation of new footpoints.  相似文献   

16.
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.  相似文献   

17.
The Pre-CME Sun     
The coronal mass ejection (CME) phenomenon occurs in closed magnetic field regions on the Sun such as active regions, filament regions, transequatorial interconnection regions, and complexes involving a combination of these. This chapter describes the current knowledge on these closed field structures and how they lead to CMEs. After describing the specific magnetic structures observed in the CME source region, we compare the substructures of CMEs to what is observed before eruption. Evolution of the closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the eruption. We describe this pre-eruption evolution and attempt to link them to the observed features of CMEs. Small-scale energetic signatures in the form of electron acceleration (signified by nonthermal radio bursts at metric wavelengths) and plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. We survey these pre-eruptive energy releases using observations taken before and during the eruption of several CMEs. Finally, we discuss how the observations can be converted into useful inputs to numerical models that can describe the CME initiation.  相似文献   

18.
The Sun in Time   总被引:1,自引:0,他引:1  
The Sun varies in time over at least twenty orders of magnitude. In this highly selective look at a vast subject, the focus is on solar variations related to the magnetic field structure of the heliosphere since these changes affect the propagation of cosmic rays in the heliosphere. The root of the changes is the magnetic field pattern near the solar surface. Some key aspects of the behavior of this pattern are reviewed. Recent solar activity has been unlike any experienced in living memory and several of the observed oddities are noted. Included here is a first attempt to directly compare three decades of magnetic field measurements in coronal holes with the heliospheric magnetic field at 1 AU. Results support the idea that nearly all the open magnetic flux from the Sun originates in coronal holes (including those close to active regions).  相似文献   

19.
The instruments on the Spartan 201 spacecraft are an Ultraviolet Coronal Spectrometer and a White Light Coronagraph. Spartan 201 was deployed by the Space Shuttle on 11 April 1993 and observed the extended solar corona for about 40 hours. The Ultraviolet Coronal Spectrometer measured the intensity and spectral line profile of HI Ly and the intensities of OVI 103.2 and 103.7 nm. Observations were made at heliocentric heights between 1.39 and 3.5 R. Four coronal targets were observed, a helmet streamer at heliographic position angle 135°, the north and south polar coronal holes, and an active region above the west limb. Measurements of the HI Ly geocorona and the solar irradiance were also made. The instrument performed as expected. Straylight suppression, spectral focus, radiometric sensitivity and background levels all appear to be satisfactory. The uv observations are aimed at determining proton temperatures and outflow velocities of hydrogen, protons and oxygen ions. Preliminary results from the north polar coronal hole observations are discussed.  相似文献   

20.
Since 1972, nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The results of comparisons of these observations are reviewed and it is demonstrated that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Non-polar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. There is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space but not all open-field regions have associated coronal holes. The well-observed declining phase of the last solar cycle was characterized by stable magnetic field and coronal hole patterns which were associated with recurrent, high-speed wind streams and interplanetary magnetic field patterns at the Earth. The ascending phase of the current cycle has been characterized by transient magnetic field and coronal hole patterns which tend to occur at high solar latitudes. This shift in magnetic field and coronal hole patterns has resulted in a less obvious and more complicated association with high-speed wind streams at the Earth.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting Scientist, Kitt Peak National Observatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号