共查询到14条相似文献,搜索用时 83 毫秒
1.
基于谐波小波包和SVM的滚动轴承故障诊断方法 总被引:1,自引:0,他引:1
针对滚动轴承故障诊断问题开展研究,设计了基于谐波小波包和支持向量机(SVM)的新型诊断方法.与传统的时频特征提取方法相比,谐波小波包具有盒状频谱和无限细分的优势.首先对滚动轴承的振动数据进行谐波小波包分解,利用各频段的小波分解系数计算特征能量,归一化之后作为特征向量,为设计的多类SVM模型提供训练样本和测试样本.利用SVM的非线性映射能力,将三个二分类器相组合设计了基于二叉树的多类SVM模型,实现了对滚动轴承的故障诊断.最后,利用Case Western Reserve University电气工程实验室的滚动轴承试验台的振动数据对设计的诊断方法进行了验证.结果表明,设计的诊断方法比传统的方法具有更高的准确率. 相似文献
2.
为了更准确地诊断滚动轴承故障,提出了一种基于小波包分析与多核学习的滚动轴承故障诊断方法.该方法首先对振动信号进行3层小波包分解,将振动信号分解为不同频带的信号,提取各频带的相对能量特征,构建特征向量;然后采用多核学习算法从训练样本集中学习核函数与分类器;最后使用训练出的分类器识别滚动轴承故障类型.为了验证方法的有效性,进行了滚动轴承故障诊断实验,实验结果表明该方法的故障诊断准确率达到98.25%,与传统的基于小波包与支持向量机的滚动轴承故障诊断方法相比,其故障诊断准确率更高,同时由于避免了核函数的选择问题,该方法更便于实际应用. 相似文献
3.
采用改进的小波分解和重构算法与包络分析相结合的方法,提取滚动轴承振动信号的故障特征频率。改进的小波分解和重构方法避免了 Mallat 算法频率混淆的缺陷,通过对重构信号特定频带进行包络分析,更加准确地提取了滚动轴承的故障特征频率。通过对无故障滚动轴承和内圈、外圈有故障的滚动轴承振动信号的分析,说明这种方法能够有效诊断滚动轴承的故障,并将该方法成功应用于某型航空发动机主轴承故障诊断。 相似文献
4.
基于小波包分析方法的航空发动机滚动轴承故障诊断 总被引:4,自引:0,他引:4
将小波包分析技术引入到航空发动机滚动轴承故障诊断的应用研究中,给出了基于小波包分析的滚动轴承故障特征提取方法:应用小波包分解与重构算法分离出了滚动轴承的故障特征频率,识别出了滚动轴承的故障类型。通过对实际航空发动机滚动轴承故障信号的分析表明,该方法可以有效地检测和诊断航空发动机的滚动轴承故障。 相似文献
5.
基于EMD和SVM的滚动轴承故障诊断方法 总被引:2,自引:7,他引:2
将支持向量机(SupportVectorMachine,简称SVM)、经验模态分解(EmpiricalModeDecomposition,简称EMD)方法和AR(Auto-Regressive,简称AR)模型相结合应用于滚动轴承故障诊断中。该方法首先对滚动轴承振动信号进行经验模态分解,将其分解为多个内禀模态函数(IntrinsicModeFunction,简称IMF)之和,然后对每一个IMF分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征向量,并以此作为SVM分类器的输入参数来区分滚动轴承的工作状态和故障类型。实验结果表明,该方法在小样本情况下仍能准确、有效地对滚动轴承的工作状态和故障类型进行分类,从而实现了滚动轴承故障诊断的自动化。 相似文献
6.
齿轮箱早期故障信号中往往包含强烈的干扰噪声,而基于简单阈值规则的小波系数降噪方法往往不能取得良好的效果.针对该问题,提出了基于形态分量分析(MCA)的双树复小波降噪方法.首先,对强背景噪声故障信号进行双树复小波变换,得到不同层的小波变换系数;然后,选取小波系数周期性较为明显层的小波系数进行MCA降噪;最后,将降噪后的系数进行单支重构后便可获得故障特征信号,对降噪信号进行包络分析便可以确定信号的故障特征频率.利用该方法对仿真分析和某轧机齿轮箱打齿故障早期信号进行了处理,结果表明:该方法能够在有效去除信号中的强背景噪声,比单独MCA降噪及软阈值降噪具有更好的效果,得到了更清晰的故障特征频率,从而为齿轮早期故障诊断提供了一种新方法. 相似文献
7.
针对模拟电路故障诊断这一难点,运用基于IDDT技术的故障诊断方法,即利用小波包变换提取电源电流各频率成分的能量,作为神经网络的输入特征矢量进行故障诊断。仿真结果表明,该方法可以快速高效地进行模拟电路故障诊断与定位。 相似文献
8.
提出了一种基于小波包变换的残差能量方法,对导弹动态测试数据进行分析处理,提取导弹的故障特征,并在此基础上利用神经网络有效地实现了故障的诊断和定位。 相似文献
9.
滚动轴承早期失效阶段,特征信号微弱,并且受传递路径衰减及环境噪声影响,故障识别相对困难。针对这一问题,提出一种基于连续小波变换的轴承早期故障诊断方法。对原始信号进行连续小波变换,利用不同尺度小波系数进行信号重构,从而得到相应尺度下的信号分量,为了获取包含尽可能多的故障信息的信号分量,以峭度为指导标准对重构信号分量做合并处理,并利用相关系数准则剔除冗余信号分量,从保留信号分量中筛选出峭度值最大的分量,将其作为最佳分量用于进一步包络解调运算,通过分析包络谱判断轴承的故障类型。利用所述方法处理轴承早期故障仿真及实测信号,均成功提取出微弱特征信息,由此表明该方法可实现滚动轴承早期故障的精确诊断。 相似文献
10.
11.
转子振动故障的小波能谱熵SVM诊断方法 总被引:5,自引:2,他引:5
融合小波能谱熵和支持向量机(SVM)的特点,提出了基于小波能谱熵的SVM故障诊断方法.利用转子试验台对转子典型振动故障进行模拟并采集振动数据,提取其振动信号的小波能谱熵作为特征向量,通过样本训练建立了转子在各种典型振动故障状态下的SVM模型和多类分类器,进而实现了对未知转子振动故障的识别.实际应用表明,提出的转子振动故障诊断方法是可行和有效性的. 相似文献
12.
13.
14.
基于大规模训练集SVM的发动机故障诊断 总被引:2,自引:1,他引:2
提出了一种新的学习策略,用于解决发动机故障诊断中大规模支持向量机(SVM)的训练问题.通过保留初始SVM分类器支持向量超平面附近的样本以及错分样本,使最终得到的约减集规模明显缩小,从而可在保持较高分类精度的前提下使训练时间明显缩短;同时,由于支持向量的数量减小,分类时间也相应缩短.探讨了序贯最小优化(SMO)算法的参数选择和实现过程中的关键问题,为这种极具潜力的算法在发动机故障诊断中的实际应用奠定了坚实的基础.仿真实例表明,这种基于大规模训练集SVM的发动机故障诊断方法有效、可靠,容易实现,可以作为工程应用的基础. 相似文献